Kingston Richard L, Gay Leslie S, Baase Walter S, Matthews Brian W
School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
J Mol Biol. 2008 Jun 13;379(4):719-31. doi: 10.1016/j.jmb.2007.12.080. Epub 2008 Jan 11.
The human pathogen mumps virus, like all paramyxoviruses, encodes a polymerase responsible for virally directed RNA synthesis. The template for the polymerase is the nucleocapsid, a filamentous protein-RNA complex harboring the viral genome. Interaction of the polymerase and the nucleocapsid is mediated by a small domain tethered to the end of the phosphoprotein (P), one of the polymerase subunits. We report the X-ray crystal structure of this region of mumps virus P (the nucleocapsid-binding domain, or NBD, amino acids 343-391). The mumps P NBD forms a compact bundle of three alpha-helices within the crystal, a fold apparently conserved across the Paramyxovirinae. In solution, however, the domain exists in the molten globule state. This is demonstrated through application of differential scanning calorimetry, circular dichroism spectroscopy, NMR spectroscopy, and dynamic light scattering. While the mumps P NBD is compact and has persistent secondary structure, it lacks a well-defined tertiary structure under normal solution conditions. It can, however, be induced to fold by addition of a stabilizing methylamine cosolute. The domain provides a rare example of a molten globule that can be crystallized. The structure that is stabilized in the crystal represents the fully folded state of the domain, which must be transiently realized during binding to the viral nucleocapsid. While the intermolecular forces that govern the polymerase-nucleocapsid interaction appear to be different in measles, mumps, and Sendai viruses, for each of these viruses, polymerase translocation involves the coupled binding and folding of protein domains. In all cases, we suggest that this will result in a weak-affinity protein complex with a short lifetime, which allows the polymerase to take rapid steps forward.
人类病原体腮腺炎病毒与所有副粘病毒一样,编码一种负责病毒导向的RNA合成的聚合酶。该聚合酶的模板是核衣壳,一种携带病毒基因组的丝状蛋白质-RNA复合物。聚合酶与核衣壳的相互作用由连接在磷蛋白(P)末端的一个小结构域介导,磷蛋白是聚合酶亚基之一。我们报道了腮腺炎病毒P的这一区域(核衣壳结合结构域,或NBD,氨基酸343 - 391)的X射线晶体结构。腮腺炎病毒P的NBD在晶体中形成了由三个α螺旋组成的紧密束状结构,这种折叠方式在副粘病毒亚科中显然是保守的。然而,在溶液中,该结构域处于熔球态。这通过差示扫描量热法、圆二色光谱法、核磁共振光谱法和动态光散射得以证明。虽然腮腺炎病毒P的NBD结构紧凑且具有持久的二级结构,但在正常溶液条件下它缺乏明确的三级结构。然而,通过添加稳定化的甲胺共溶质可以诱导其折叠。该结构域提供了一个罕见的可结晶熔球的例子。在晶体中稳定的结构代表了该结构域的完全折叠状态,这种状态在与病毒核衣壳结合过程中必然会短暂出现。虽然在麻疹病毒、腮腺炎病毒和仙台病毒中,控制聚合酶 - 核衣壳相互作用的分子间力似乎有所不同,但对于每种病毒而言,聚合酶易位都涉及蛋白质结构域的偶联结合和折叠。在所有情况下,我们认为这将导致形成一种亲和力弱、寿命短的蛋白质复合物,这使得聚合酶能够快速向前移动。