Ratushny Vladimir, Golemis Erica
Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
Biotechniques. 2008 Apr;44(5):655-62. doi: 10.2144/000112797.
In 1983, while investigators had identified a few human proteins as important regulators of specific biological outcomes, how these proteins acted in the cell was essentially unknown in almost all cases. Twenty-five years later, our knowledge of the mechanistic basis of protein action has been transformed by our increasingly detailed understanding of protein-protein interactions, which have allowed us to define cellular machines. The advent of the yeast two-hybrid (Y2H) system in 1989 marked a milestone in the field of proteomics. Exploiting the modular nature of transcription factors, the Y2H system allows facile measurement of the activation of reporter genes based on interactions between two chimeric or "hybrid" proteins of interest. After a decade of service as a leading platform for individual investigators to use in exploring the interaction properties of interesting target proteins, the Y2H system has increasingly been applied in high-throughput applications intended to map genome-scale protein-protein interactions for model organisms and humans. Although some significant technical limitations apply, Y2H has made a great contribution to our general understanding of the topology of cellular signaling networks.
1983年,尽管研究人员已鉴定出一些人类蛋白质是特定生物学结果的重要调节因子,但在几乎所有情况下,这些蛋白质在细胞中的作用方式基本上仍不为人知。25年后,我们对蛋白质作用机制基础的认识因对蛋白质-蛋白质相互作用的日益深入了解而发生了转变,这种了解使我们能够定义细胞机器。1989年酵母双杂交(Y2H)系统的出现标志着蛋白质组学领域的一个里程碑。利用转录因子的模块化性质,Y2H系统能够基于两种感兴趣的嵌合或“杂交”蛋白质之间的相互作用,轻松测量报告基因的激活情况。在作为个体研究人员用于探索感兴趣的目标蛋白质相互作用特性的领先平台服务了十年之后,Y2H系统越来越多地应用于高通量应用中,旨在绘制模式生物和人类的全基因组规模蛋白质-蛋白质相互作用图谱。尽管存在一些重大技术限制,但Y2H对我们全面理解细胞信号网络的拓扑结构做出了巨大贡献。