Ronsse Renaud, Lefèvre Philippe, Sepulchre Rodolphe
Department of Electrical Engineering and Computer Science (Montefiore Institute), Université de Liège, Grande Traverse 10 (B28), Liège, Belgium.
Neural Netw. 2008 May;21(4):577-83. doi: 10.1016/j.neunet.2008.03.005. Epub 2008 Apr 25.
At the crossing between motor control neuroscience and robotics system theory, the paper presents a rhythmic experiment that is amenable both to handy laboratory implementation and simple mathematical modeling. The experiment is based on an impact juggling task, requiring the coordination of two upper-limb effectors and some phase-locking with the trajectories of one or several juggled objects. We describe the experiment, its implementation and the mathematical model used for the analysis. Our underlying research focuses on the role of sensory feedback in rhythmic tasks. In a robotic implementation of our experiment, we study the minimum feedback that is required to achieve robust control. A limited source of feedback, measuring only the impact times, is shown to give promising results. A second field of investigation concerns the human behavior in the same impact juggling task. We study how a variation of the tempo induces a transition between two distinct control strategies with different sensory feedback requirements. Analogies and differences between the robotic and human behaviors are obviously of high relevance in such a flexible setup.
在运动控制神经科学与机器人系统理论的交叉领域,本文提出了一个既便于在实验室实施又易于进行简单数学建模的节律性实验。该实验基于一项撞击杂耍任务,需要协调两个上肢效应器,并与一个或多个杂耍物体的轨迹进行某种锁相。我们描述了该实验、其实施过程以及用于分析的数学模型。我们的基础研究聚焦于感觉反馈在节律性任务中的作用。在我们实验的机器人实现中,我们研究实现稳健控制所需的最小反馈。结果表明,仅测量撞击时间的有限反馈源能给出有前景的结果。第二个研究领域涉及在同一撞击杂耍任务中的人类行为。我们研究节奏变化如何引发两种具有不同感觉反馈要求的不同控制策略之间的转变。在这样一个灵活的设置中,机器人行为与人类行为之间的相似性和差异显然具有高度相关性。