Suppr超能文献

混合节奏-离散任务的最优控制:重访弹球问题。

Optimal control of a hybrid rhythmic-discrete task: the bouncing ball revisited.

机构信息

Department of Electrical Engineering and Computer Science, Montefiore Institute, Université de Liège, Liège, Belgium.

出版信息

J Neurophysiol. 2010 May;103(5):2482-93. doi: 10.1152/jn.00600.2009. Epub 2010 Feb 3.

Abstract

Rhythmically bouncing a ball with a racket is a hybrid task that combines continuous rhythmic actuation of the racket with the control of discrete impact events between racket and ball. This study presents experimental data and a two-layered modeling framework that explicitly addresses the hybrid nature of control: a first discrete layer calculates the state to reach at impact and the second continuous layer smoothly drives the racket to this desired state, based on optimality principles. The testbed for this hybrid model is task performance at a range of increasingly slower tempos. When slowing the rhythm of the bouncing actions, the continuous cycles become separated into a sequence of discrete movements interspersed by dwell times and directed to achieve the desired impact. Analyses of human performance show increasing variability of performance measures with slower tempi, associated with a change in racket trajectories from approximately sinusoidal to less symmetrical velocity profiles. Matching results of model simulations give support to a hybrid control model based on optimality, and therefore suggest that optimality principles are applicable to the sensorimotor control of complex movements such as ball bouncing.

摘要

用球拍有节奏地弹球是一项混合任务,它将球拍的连续节奏驱动与球拍和球之间的离散撞击事件的控制结合在一起。本研究提出了实验数据和一个两层建模框架,该框架明确解决了控制的混合性质:第一层是离散层,计算撞击时的到达状态,第二层是连续层,根据最优原则,将球拍平滑地驱动到这个期望状态。该混合模型的试验台是在一系列越来越慢的节奏下的任务性能。当减缓弹球动作的节奏时,连续周期会被分解为离散运动的序列,离散运动之间穿插着停留时间,并被引导以实现期望的撞击。对人类表现的分析表明,随着节奏变慢,性能指标的可变性增加,与球拍轨迹从近似正弦变为不太对称的速度曲线相关联。模型模拟的匹配结果为基于最优性的混合控制模型提供了支持,因此表明最优性原则适用于球弹等复杂运动的感觉运动控制。

相似文献

1
Optimal control of a hybrid rhythmic-discrete task: the bouncing ball revisited.
J Neurophysiol. 2010 May;103(5):2482-93. doi: 10.1152/jn.00600.2009. Epub 2010 Feb 3.
2
Actively tracking 'passive' stability in a ball bouncing task.
Brain Res. 2003 Aug 22;982(1):64-78. doi: 10.1016/s0006-8993(03)02976-7.
3
The Effect of Haptic Guidance on Learning a Hybrid Rhythmic-Discrete Motor Task.
IEEE Trans Haptics. 2015 Apr-Jun;8(2):222-34. doi: 10.1109/TOH.2014.2375173. Epub 2014 Nov 26.
4
Learning new perception-action solutions in virtual ball bouncing.
Exp Brain Res. 2007 Aug;181(2):249-65. doi: 10.1007/s00221-007-0924-1. Epub 2007 Mar 21.
5
Mixed control for perception and action: timing and error correction in rhythmic ball-bouncing.
Exp Brain Res. 2013 May;226(4):603-15. doi: 10.1007/s00221-013-3475-7. Epub 2013 Mar 21.
6
Bouncing between model and data: stability, passivity, and optimality in hybrid dynamics.
J Mot Behav. 2010 Nov;42(6):389-99. doi: 10.1080/00222895.2010.526451.
7
Passive stability and active control in a rhythmic task.
J Neurophysiol. 2007 Nov;98(5):2633-46. doi: 10.1152/jn.00742.2007. Epub 2007 Sep 19.
8
Implicit guidance to stable performance in a rhythmic perceptual-motor skill.
Exp Brain Res. 2015 Jun;233(6):1783-99. doi: 10.1007/s00221-015-4251-7. Epub 2015 Mar 28.
9
Control of ball-racket interactions in rhythmic propulsion of elastic and non-elastic balls.
Exp Brain Res. 2003 Mar;149(1):17-29. doi: 10.1007/s00221-002-1331-2. Epub 2003 Jan 16.
10
The self-organization of ball bouncing.
Biol Cybern. 2018 Dec;112(6):509-522. doi: 10.1007/s00422-018-0776-8. Epub 2018 Aug 23.

引用本文的文献

1
Inferring control objectives in a virtual balancing task in humans and monkeys.
Elife. 2024 May 13;12:RP88514. doi: 10.7554/eLife.88514.
2
Continuous evaluation of cost-to-go for flexible reaching control and online decisions.
PLoS Comput Biol. 2023 Sep 27;19(9):e1011493. doi: 10.1371/journal.pcbi.1011493. eCollection 2023 Sep.
3
Inferring control objectives in a virtual balancing task in humans and monkeys.
bioRxiv. 2023 Nov 27:2023.05.02.539055. doi: 10.1101/2023.05.02.539055.
4
Body Mechanics, Optimality, and Sensory Feedback in the Human Control of Complex Objects.
Neural Comput. 2023 Apr 18;35(5):853-895. doi: 10.1162/neco_a_01576.
5
Motor control beyond reach-how humans hit a target with a whip.
R Soc Open Sci. 2022 Oct 5;9(10):220581. doi: 10.1098/rsos.220581. eCollection 2022 Oct.
7
Establishing metrics and control laws for the learning process: ball and beam balancing.
Biol Cybern. 2020 Feb;114(1):83-93. doi: 10.1007/s00422-020-00815-z. Epub 2020 Jan 18.
8
Predictability, force, and (anti)resonance in complex object control.
J Neurophysiol. 2018 Aug 1;120(2):765-780. doi: 10.1152/jn.00918.2017. Epub 2018 Apr 18.
10
Model of rhythmic ball bouncing using a visually controlled neural oscillator.
J Neurophysiol. 2017 Oct 1;118(4):2470-2482. doi: 10.1152/jn.00054.2017. Epub 2017 Aug 9.

本文引用的文献

1
Open-loop, closed-loop and compensatory control: performance improvement under pressure in a rhythmic task.
Exp Brain Res. 2010 Apr;201(4):729-41. doi: 10.1007/s00221-009-2087-8. Epub 2009 Nov 27.
2
Moving the arm at different rates: slow movements are avoided.
J Mot Behav. 2010 Jan-Feb;42(1):29-36. doi: 10.1080/00222890903267116.
3
A computational model for rhythmic and discrete movements in uni- and bimanual coordination.
Neural Comput. 2009 May;21(5):1335-70. doi: 10.1162/neco.2008.03-08-720.
4
Reversal of bimanual feedback responses with changes in task goal.
J Neurophysiol. 2009 Jan;101(1):283-8. doi: 10.1152/jn.90887.2008. Epub 2008 Nov 5.
5
Central pattern generators for locomotion control in animals and robots: a review.
Neural Netw. 2008 May;21(4):642-53. doi: 10.1016/j.neunet.2008.03.014. Epub 2008 May 14.
6
Robotics and neuroscience: a rhythmic interaction.
Neural Netw. 2008 May;21(4):577-83. doi: 10.1016/j.neunet.2008.03.005. Epub 2008 Apr 25.
7
Distinct timing mechanisms produce discrete and continuous movements.
PLoS Comput Biol. 2008 Apr 25;4(4):e1000061. doi: 10.1371/journal.pcbi.1000061.
8
Stability and variability: indicators for passive stability and active control in a rhythmic task.
J Neurophysiol. 2008 Jun;99(6):3027-41. doi: 10.1152/jn.01367.2007. Epub 2008 Mar 19.
9
Noise in the nervous system.
Nat Rev Neurosci. 2008 Apr;9(4):292-303. doi: 10.1038/nrn2258.
10
Control of bimanual rhythmic movements: trading efficiency for robustness depending on the context.
Exp Brain Res. 2008 May;187(2):193-205. doi: 10.1007/s00221-008-1297-9. Epub 2008 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验