Amadou Claire, Pascal Géraldine, Mangenot Sophie, Glew Michelle, Bontemps Cyril, Capela Delphine, Carrère Sébastien, Cruveiller Stéphane, Dossat Carole, Lajus Aurélie, Marchetti Marta, Poinsot Véréna, Rouy Zoé, Servin Bertrand, Saad Maged, Schenowitz Chantal, Barbe Valérie, Batut Jacques, Médigue Claudine, Masson-Boivin Catherine
Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR CNRS-INRA 2594/441, 31326 Castanet-Tolosan Cedex, France.
Genome Res. 2008 Sep;18(9):1472-83. doi: 10.1101/gr.076448.108. Epub 2008 May 19.
We report the first complete genome sequence of a beta-proteobacterial nitrogen-fixing symbiont of legumes, Cupriavidus taiwanensis LMG19424. The genome consists of two chromosomes of size 3.42 Mb and 2.50 Mb, and a large symbiotic plasmid of 0.56 Mb. The C. taiwanensis genome displays an unexpected high similarity with the genome of the saprophytic bacterium C. eutrophus H16, despite being 0.94 Mb smaller. Both organisms harbor two chromosomes with large regions of synteny interspersed by specific regions. In contrast, the two species host highly divergent plasmids, with the consequence that C. taiwanensis is symbiotically proficient and less metabolically versatile. Altogether, specific regions in C. taiwanensis compared with C. eutrophus cover 1.02 Mb and are enriched in genes associated with symbiosis or virulence in other bacteria. C. taiwanensis reveals characteristics of a minimal rhizobium, including the most compact (35-kb) symbiotic island (nod and nif) identified so far in any rhizobium. The atypical phylogenetic position of C. taiwanensis allowed insightful comparative genomics of all available rhizobium genomes. We did not find any gene that was both common and specific to all rhizobia, thus suggesting that a unique shared genetic strategy does not support symbiosis of rhizobia with legumes. Instead, phylodistribution analysis of more than 200 Sinorhizobium meliloti known symbiotic genes indicated large and complex variations of their occurrence in rhizobia and non-rhizobia. This led us to devise an in silico method to extract genes preferentially associated with rhizobia. We discuss how the novel genes we have identified may contribute to symbiotic adaptation.
我们报道了豆科植物的β-变形菌纲固氮共生菌台湾贪铜菌(Cupriavidus taiwanensis)LMG19424的首个完整基因组序列。该基因组由两条大小分别为3.42 Mb和2.50 Mb的染色体以及一个大小为0.56 Mb的大型共生质粒组成。尽管台湾贪铜菌的基因组比腐生细菌嗜麦芽窄食单胞菌(C. eutrophus)H16的基因组小0.94 Mb,但二者却显示出意想不到的高度相似性。两种生物都含有两条染色体,其大片区域存在共线性,中间穿插着特定区域。相比之下,这两个物种的质粒差异很大,结果导致台湾贪铜菌具有共生能力但代谢多样性较低。与嗜麦芽窄食单胞菌相比,台湾贪铜菌的特定区域共计1.02 Mb,并且富含与其他细菌共生或毒力相关的基因。台湾贪铜菌展现出最小化根瘤菌的特征,包括迄今为止在任何根瘤菌中鉴定出的最紧凑(35 kb)的共生岛(nod和nif)。台湾贪铜菌的非典型系统发育位置使得对所有可用根瘤菌基因组进行有深度的比较基因组学研究成为可能。我们没有发现任何所有根瘤菌共有的特定基因,因此表明不存在支持根瘤菌与豆科植物共生的独特共享遗传策略。相反,对200多个已知的苜蓿中华根瘤菌(Sinorhizobium meliloti)共生基因的系统分布分析表明,它们在根瘤菌和非根瘤菌中的出现情况存在巨大而复杂的差异。这促使我们设计了一种计算机方法来提取与根瘤菌优先相关的基因。我们讨论了我们鉴定出的新基因可能如何促进共生适应。