Suppr超能文献

白细胞滚动黏附与变形的三维计算建模及模拟

3D computational modeling and simulation of leukocyte rolling adhesion and deformation.

作者信息

Pappu Vijay, Bagchi Prosenjit

机构信息

Department of Mechanical and Aerospace Engineering, Rutgers University, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA.

出版信息

Comput Biol Med. 2008 Jun;38(6):738-53. doi: 10.1016/j.compbiomed.2008.04.002. Epub 2008 May 22.

Abstract

A 3D computational fluid dynamic (CFD) model is presented to simulate transient rolling adhesion and deformation of leukocytes over a P-selectin coated surface in shear flow. The computational model is based on immersed boundary method for cell deformation, and stochastic Monte Carlo simulation for receptor/ligand interaction. The model is shown to predict the characteristic 'stop-and-go' motion of rolling leukocytes. Here we examine the effect of cell deformation, shear rate, and microvilli distribution on the rolling characteristics. Comparison with experimental measurements is presented throughout the article. We observe that compliant cells roll more stably, and have longer pause times due to reduced bond force and increased bond lifetime. Microvilli presentation is shown to affect rolling characteristics by altering the step size, but not pause times. Our simulations predict a significant sideway motion of the cell arising purely due to receptor/ligand interaction, and discrete nature of microvilli distribution. Adhesion is seen to occur via multiple tethers, each of which forms multiple selectin bonds, but often one tether is sufficient to support rolling. The adhesion force is concentrated in only 1-3 tethered microvilli in the rear-most part of a cell. We also observe that the number of selectin bonds that hold the cell effectively against hydrodynamic shear is significantly less than the total adhesion bonds formed between a cell and the substrate. The force loading on individual microvillus and selectin bond is not continuous, rather occurs in steps. Further, we find that the peak force on a tethered microvillus is much higher than that measured to cause tether extrusion.

摘要

提出了一种三维计算流体动力学(CFD)模型,用于模拟剪切流中白细胞在P-选择素包被表面上的瞬时滚动黏附与变形。该计算模型基于用于细胞变形的浸入边界法和用于受体/配体相互作用的随机蒙特卡罗模拟。该模型被证明能够预测滚动白细胞的特征性“走走停停”运动。在此,我们研究细胞变形、剪切速率和微绒毛分布对滚动特征的影响。文章通篇都给出了与实验测量结果的比较。我们观察到,具有柔顺性的细胞滚动更稳定,并且由于黏附力减小和黏附寿命增加而具有更长的暂停时间。微绒毛的呈现方式通过改变步长来影响滚动特征,但不影响暂停时间。我们的模拟预测,细胞会由于受体/配体相互作用以及微绒毛分布的离散性质而产生显著的侧向运动。黏附通过多个系链发生,每个系链形成多个选择素键,但通常一个系链就足以支持滚动。黏附力集中在细胞最后端仅1 - 3个有系链的微绒毛中。我们还观察到,有效抵抗流体动力剪切力固定细胞的选择素键数量显著少于细胞与底物之间形成的总黏附键数量。单个微绒毛和选择素键上的力加载不是连续的,而是分步发生的。此外,我们发现有系链的微绒毛上的峰值力远高于导致系链挤出所测得的力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验