Pawar Parag, Jadhav Sameer, Eggleton Charles D, Konstantopoulos Konstantinos
Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA.
Am J Physiol Heart Circ Physiol. 2008 Oct;295(4):H1439-50. doi: 10.1152/ajpheart.91536.2007. Epub 2008 Jul 25.
Polymorphonuclear leukocyte (PMN) recruitment to sites of inflammation is initiated by selectin-mediated PMN tethering and rolling on activated endothelium under flow. Cell rolling is modulated by bulk cell deformation (mesoscale), microvillus deformability (microscale), and receptor-ligand binding kinetics (nanoscale). Selectin-ligand bonds exhibit a catch-slip bond behavior, and their dissociation is governed not only by the force but also by the force history. Whereas previous theoretical models have studied the significance of these three "length scales" in isolation, how their interplay affects cell rolling has yet to be resolved. We therefore developed a three-dimensional computational model that integrates the aforementioned length scales to delineate their relative contributions to PMN rolling. Our simulations predict that the catch-slip bond behavior and to a lesser extent bulk cell deformation are responsible for the shear threshold phenomenon. Cells bearing deformable rather than rigid microvilli roll slower only at high P-selectin site densities and elevated levels of shear (>or=400 s(-1)). The more compliant cells (membrane stiffness=1.2 dyn/cm) rolled slower than cells with a membrane stiffness of 3.0 dyn/cm at shear rates >50 s(-1). In summary, our model demonstrates that cell rolling over a ligand-coated surface is a highly coordinated process characterized by a complex interplay between forces acting on three distinct length scales.
多形核白细胞(PMN)募集到炎症部位是由选择素介导的PMN在流动状态下与活化内皮细胞的栓系和滚动启动的。细胞滚动受整体细胞变形(中尺度)、微绒毛变形能力(微尺度)和受体-配体结合动力学(纳米尺度)调节。选择素-配体键表现出捕捉-滑动键行为,其解离不仅受作用力影响,还受作用力历史影响。尽管先前的理论模型已分别研究了这三个“长度尺度”的意义,但它们之间的相互作用如何影响细胞滚动尚未得到解决。因此,我们开发了一个三维计算模型,整合上述长度尺度以描述它们对PMN滚动的相对贡献。我们的模拟预测,捕捉-滑动键行为以及在较小程度上的整体细胞变形是剪切阈值现象的原因。仅在高P-选择素位点密度和较高剪切水平(≥400 s⁻¹)下,带有可变形而非刚性微绒毛的细胞滚动较慢。在剪切速率>50 s⁻¹时,顺应性更高的细胞(膜刚度 = 1.2 dyn/cm)比膜刚度为3.0 dyn/cm的细胞滚动得更慢。总之,我们的模型表明,细胞在配体包被表面上的滚动是一个高度协调的过程,其特征是作用于三个不同长度尺度的力之间存在复杂的相互作用。