Suppr超能文献

视杆单色患者光感受器镶嵌的体内成像。

In vivo imaging of the photoreceptor mosaic of a rod monochromat.

作者信息

Carroll Joseph, Choi Stacey S, Williams David R

机构信息

Department of Ophthalmology, Medical College of Wisconsin, The Eye Institute, 925 North 87th Street, Milwaukee, WI 53226, USA.

出版信息

Vision Res. 2008 Nov;48(26):2564-8. doi: 10.1016/j.visres.2008.04.006. Epub 2008 May 21.

Abstract

Complete achromatopsia (i.e., rod monochromacy) is a congenital vision disorder in which cone function is absent or severely diminished, often due to mutations in one of two components of the cone phototransduction cascade (transducin or the cyclic-nucleotide gated channel). Previous histological data concerning cone structure are conflicting; suggesting anywhere from normal numbers of foveal cones to a complete absence of foveal cones. Here, we used an adaptive optics ophthalmoscope to obtain in vivo retinal images from a rod monochromat for whom the genetic basis of the disorder consists of a homozygous mutation in the CNGB3 gene. Behavioral data from the patient were consistent with an absence of cone function. Retinal images revealed a severely disrupted photoreceptor mosaic in the fovea and parafovea, where the size and density of the visible photoreceptors resembled that of normal rods. Imaging of additional rod monochromats to characterize differences in the photoreceptor mosaic between genetically classified patients will be required to determine which, if any, might be receptive to restorative gene therapy procedures.

摘要

完全性色盲(即视杆单色视)是一种先天性视力障碍,其中视锥细胞功能缺失或严重受损,通常是由于视锥细胞光转导级联反应的两个成分之一(转导素或环核苷酸门控通道)发生突变所致。先前关于视锥细胞结构的组织学数据相互矛盾,提示中央凹视锥细胞数量从正常到完全缺失不等。在此,我们使用自适应光学检眼镜从一名视杆单色视患者获取了活体视网膜图像,该患者疾病的遗传基础是CNGB3基因的纯合突变。患者的行为数据与视锥细胞功能缺失一致。视网膜图像显示中央凹和旁中央凹的光感受器镶嵌严重紊乱,可见光感受器的大小和密度与正常视杆细胞相似。需要对更多视杆单色视患者进行成像,以表征基因分型患者之间光感受器镶嵌的差异,从而确定哪些患者(如果有的话)可能适合恢复性基因治疗程序。

相似文献

1
In vivo imaging of the photoreceptor mosaic of a rod monochromat.
Vision Res. 2008 Nov;48(26):2564-8. doi: 10.1016/j.visres.2008.04.006. Epub 2008 May 21.
2
Characterization of Retinal Structure in ATF6-Associated Achromatopsia.
Invest Ophthalmol Vis Sci. 2019 Jun 3;60(7):2631-2640. doi: 10.1167/iovs.19-27047.
3
Interocular Symmetry of Foveal Cone Topography in Congenital Achromatopsia.
Curr Eye Res. 2020 Oct;45(10):1257-1264. doi: 10.1080/02713683.2020.1737138. Epub 2020 Mar 13.
4
Residual Foveal Cone Structure in CNGB3-Associated Achromatopsia.
Invest Ophthalmol Vis Sci. 2016 Aug 1;57(10):3984-95. doi: 10.1167/iovs.16-19313.
5
CNGB3 achromatopsia with progressive loss of residual cone function and impaired rod-mediated function.
Invest Ophthalmol Vis Sci. 2007 Aug;48(8):3864-71. doi: 10.1167/iovs.06-1521.
6
Missense Variant Causes Recessive Achromatopsia in Original Braunvieh Cattle.
Int J Mol Sci. 2021 Nov 18;22(22):12440. doi: 10.3390/ijms222212440.
7
REPEATABILITY AND LONGITUDINAL ASSESSMENT OF FOVEAL CONE STRUCTURE IN CNGB3-ASSOCIATED ACHROMATOPSIA.
Retina. 2017 Oct;37(10):1956-1966. doi: 10.1097/IAE.0000000000001434.
8
Longitudinal Imaging of the Foveal Cone Mosaic in CNGA3-Associated Achromatopsia.
Invest Ophthalmol Vis Sci. 2024 Oct 1;65(12):6. doi: 10.1167/iovs.65.12.6.
10
A Novel Achromatopsia Mouse Model Resulting From a Naturally Occurring Missense Change in Cngb3.
Invest Ophthalmol Vis Sci. 2018 Dec 3;59(15):6102-6110. doi: 10.1167/iovs.18-24328.

引用本文的文献

1
Adaptive optics retinal imaging in patients with usher syndrome.
Front Ophthalmol (Lausanne). 2024 May 28;4:1349234. doi: 10.3389/fopht.2024.1349234. eCollection 2024.
3
Extracting spacing-derived estimates of rod density in healthy retinae.
Biomed Opt Express. 2022 Dec 5;14(1):1-17. doi: 10.1364/BOE.473101. eCollection 2023 Jan 1.
4
Comparison of confocal and non-confocal split-detection cone photoreceptor imaging.
Biomed Opt Express. 2021 Jan 8;12(2):737-755. doi: 10.1364/BOE.403907. eCollection 2021 Feb 1.
5
Promises and pitfalls of evaluating photoreceptor-based retinal disease with adaptive optics scanning light ophthalmoscopy (AOSLO).
Prog Retin Eye Res. 2021 Jul;83:100920. doi: 10.1016/j.preteyeres.2020.100920. Epub 2020 Nov 6.
6
Validating Fluorescent Chrnb4.EGFP Mouse Models for the Study of Cone Photoreceptor Degeneration.
Transl Vis Sci Technol. 2020 Aug 18;9(9):28. doi: 10.1167/tvst.9.9.28. eCollection 2020 Aug.
7
Intraobserver Repeatability and Interobserver Reproducibility of Foveal Cone Density Measurements in and -Associated Achromatopsia.
Transl Vis Sci Technol. 2020 Jun 26;9(7):37. doi: 10.1167/tvst.9.7.37. eCollection 2020 Jun.
8
Photoreceptor Structure in GNAT2-Associated Achromatopsia.
Invest Ophthalmol Vis Sci. 2020 Mar 9;61(3):40. doi: 10.1167/iovs.61.3.40.
9
Rare ophthalmology diseases.
Rom J Ophthalmol. 2019 Jan-Mar;63(1):10-14.
10
Cellular imaging of inherited retinal diseases using adaptive optics.
Eye (Lond). 2019 Nov;33(11):1683-1698. doi: 10.1038/s41433-019-0474-3. Epub 2019 Jun 4.

本文引用的文献

1
Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina.
Opt Express. 2005 Jun 13;13(12):4792-811. doi: 10.1364/opex.13.004792.
2
Adaptive optics scanning laser ophthalmoscopy.
Opt Express. 2002 May 6;10(9):405-12. doi: 10.1364/oe.10.000405.
3
Improvement in retinal image quality with dynamic correction of the eye's aberrations.
Opt Express. 2001 May 21;8(11):631-43. doi: 10.1364/oe.8.000631.
4
CNGB3 achromatopsia with progressive loss of residual cone function and impaired rod-mediated function.
Invest Ophthalmol Vis Sci. 2007 Aug;48(8):3864-71. doi: 10.1167/iovs.06-1521.
5
High-resolution imaging with adaptive optics in patients with inherited retinal degeneration.
Invest Ophthalmol Vis Sci. 2007 Jul;48(7):3283-91. doi: 10.1167/iovs.06-1422.
6
Restoration of cone vision in a mouse model of achromatopsia.
Nat Med. 2007 Jun;13(6):685-7. doi: 10.1038/nm1596. Epub 2007 May 21.
7
Optical coherence tomography of the macula in congenital achromatopsia.
Invest Ophthalmol Vis Sci. 2007 May;48(5):2249-53. doi: 10.1167/iovs.06-1173.
8
Automated identification of cone photoreceptors in adaptive optics retinal images.
J Opt Soc Am A Opt Image Sci Vis. 2007 May;24(5):1358-63. doi: 10.1364/josaa.24.001358.
9
High-resolution retinal imaging of cone-rod dystrophy.
Ophthalmology. 2006 Jun;113(6):1019.e1. doi: 10.1016/j.ophtha.2006.01.056. Epub 2006 May 2.
10
In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function.
Invest Ophthalmol Vis Sci. 2006 May;47(5):2080-92. doi: 10.1167/iovs.05-0997.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验