Wolfing Jessica I, Chung Mina, Carroll Joseph, Roorda Austin, Williams David R
Center for Visual Science, University of Rochester, Rochester, New York 14627, USA.
Ophthalmology. 2006 Jun;113(6):1019.e1. doi: 10.1016/j.ophtha.2006.01.056. Epub 2006 May 2.
This study examines a patient with cone-rod dystrophy using high-resolution adaptive optics retinal imaging. Conventional ophthalmoscopes provide limited resolution due to their inability to overcome the eye's optical aberrations. In contrast, adaptive optics ophthalmoscopes correct these aberrations to provide noninvasive high-resolution views of the living retina. To date, adaptive optics ophthalmoscopy has been used mainly to examine the normal retina. Here we use adaptive optics ophthalmoscopy to image cone-rod dystrophy in vivo and compare these results with standard clinical tests.
Observational case report.
High-resolution retinal images of a patient with cone-rod dystrophy were obtained with the University of Rochester adaptive optics flood-illuminated ophthalmoscope and the adaptive optics scanning laser ophthalmoscope located at the University of Houston and compared with standard clinical tests, including fundus photography, Goldmann visual fields, fluorescein angiography, optical coherence tomography, electroretinography, and multifocal electroretinography.
Direct measurement of cone density and diameter and comparison of adaptive optics images with standard clinical imaging and functional tests.
Adaptive optics images were acquired at multiple retinal locations throughout a clinically detected bull's-eye lesion. Within the atrophic regions, we observed large areas devoid of wave-guiding cones. In contrast, regions that appeared relatively spared by clinical examination contained a completely tiled cone mosaic. However, in these areas the cones were abnormally large, resulting in a 6.6-fold reduction from the normal peak cone density (patient peak density: 30 100 cones/mm2, normal peak density: 199 200 cones/mm2). Multifocal electroretinography confirmed a 5.5-fold reduction in amplitude of the central peak (10.8 nanovolts/degree2 vs. 59.8 nanovolts/degree2).
Adaptive optics ophthalmoscopy is a noninvasive technique to observe a patient's retinal pathology directly at a cellular level. It can provide a quantitative measurement of photoreceptor loss in retinal disease.
本研究使用高分辨率自适应光学视网膜成像技术对一名患有视锥 - 视杆营养不良的患者进行检查。传统检眼镜由于无法克服眼睛的光学像差,提供的分辨率有限。相比之下,自适应光学检眼镜可校正这些像差,以提供活体视网膜的非侵入性高分辨率视图。迄今为止,自适应光学检眼镜主要用于检查正常视网膜。在此,我们使用自适应光学检眼镜对视锥 - 视杆营养不良进行活体成像,并将这些结果与标准临床检查进行比较。
观察性病例报告。
使用罗切斯特大学的自适应光学泛光照明检眼镜以及位于休斯顿大学的自适应光学扫描激光检眼镜,获取一名视锥 - 视杆营养不良患者的高分辨率视网膜图像,并与标准临床检查进行比较,包括眼底照相、Goldmann视野检查、荧光素血管造影、光学相干断层扫描、视网膜电图和多焦视网膜电图。
直接测量视锥细胞密度和直径,并将自适应光学图像与标准临床成像及功能检查进行比较。
在临床上检测到的靶心病变的整个视网膜多个位置采集了自适应光学图像。在萎缩区域内,我们观察到大片没有波导视锥细胞的区域。相比之下,临床检查显示相对未受影响的区域包含完全平铺的视锥细胞镶嵌图。然而,在这些区域中视锥细胞异常大,导致视锥细胞峰值密度比正常降低了6.6倍(患者峰值密度:30100个视锥细胞/mm²,正常峰值密度:199200个视锥细胞/mm²)。多焦视网膜电图证实中心峰值幅度降低了5.5倍(10.8纳伏/度²对59.8纳伏/度²)。
自适应光学检眼镜是一种在细胞水平直接观察患者视网膜病理的非侵入性技术。它可以对视网膜疾病中光感受器的损失进行定量测量。