Suppr超能文献

共聚焦和非共聚焦分裂检测视锥光感受器成像的比较。

Comparison of confocal and non-confocal split-detection cone photoreceptor imaging.

作者信息

Sredar Nripun, Razeen Moataz, Kowalski Bartlomiej, Carroll Joseph, Dubra Alfredo

机构信息

Department of Ophthalmology, Stanford University, Palo Alto, CA 94303, USA.

Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA.

出版信息

Biomed Opt Express. 2021 Jan 8;12(2):737-755. doi: 10.1364/BOE.403907. eCollection 2021 Feb 1.

Abstract

Quadrant reflectance confocal and non-confocal scanning light ophthalmoscope images of the photoreceptor mosaic were recorded in a subject with congenital achromatopsia (ACHM) and a normal control. These images, captured with various circular and annular apertures, were used to calculate split-detection images, revealing two cone photoreceptor contrast mechanisms. The first contrast mechanism, maximal in the non-confocal 5.5-10 Airy disk diameter annular region, is unrelated to the cone reflectivity in confocal or flood illumination imaging. The second mechanism, maximal for confocal split-detection, is related to the cone reflectivity in confocal or flood illumination imaging that originates from the ellipsoid zone and/or inner-outer segment junction. Seeking to maximize image contrast, split-detection images were generated using various quadrant detector combinations, with opposite (diagonal) quadrant detectors producing the highest contrast. Split-detection generated with the addition of adjacent quadrant detector pairs, shows lower contrast, while azimuthal split-detection images, calculated from adjacent quadrant detectors, showed the lowest contrast. Finally, the integration of image pairs with orthogonal split directions was used to produce images in which the photoreceptor contrast does not change with direction.

摘要

在一名先天性全色盲(ACHM)患者和一名正常对照者中,记录了象限反射共焦和非共焦扫描光检眼镜下的光感受器镶嵌图像。这些使用各种圆形和环形孔径拍摄的图像,用于计算分裂检测图像,揭示了两种视锥光感受器对比机制。第一种对比机制在非共焦5.5 - 10艾里斑直径环形区域达到最大值,与共焦或泛光照明成像中的视锥反射率无关。第二种机制在共焦分裂检测时达到最大值,与共焦或泛光照明成像中源自椭球区和/或内外段交界处的视锥反射率有关。为了使图像对比度最大化,使用各种象限探测器组合生成分裂检测图像,相对(对角)象限探测器产生的对比度最高。添加相邻象限探测器对生成的分裂检测显示对比度较低,而由相邻象限探测器计算出的方位角分裂检测图像对比度最低。最后,使用具有正交分裂方向的图像对进行整合,以生成光感受器对比度不随方向变化的图像。

相似文献

1
Comparison of confocal and non-confocal split-detection cone photoreceptor imaging.
Biomed Opt Express. 2021 Jan 8;12(2):737-755. doi: 10.1364/BOE.403907. eCollection 2021 Feb 1.
2
Minimum intensity projection of embossed quadrant-detection images for improved photoreceptor mosaic visualisation.
Front Ophthalmol (Lausanne). 2024 Mar 13;4:1349297. doi: 10.3389/fopht.2024.1349297. eCollection 2024.
3
Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images.
Biomed Opt Express. 2016 Apr 27;7(5):2036-50. doi: 10.1364/BOE.7.002036. eCollection 2016 May 1.
4
Characterization of Retinal Structure in ATF6-Associated Achromatopsia.
Invest Ophthalmol Vis Sci. 2019 Jun 3;60(7):2631-2640. doi: 10.1167/iovs.19-27047.
5
Interocular Symmetry of Foveal Cone Topography in Congenital Achromatopsia.
Curr Eye Res. 2020 Oct;45(10):1257-1264. doi: 10.1080/02713683.2020.1737138. Epub 2020 Mar 13.
6
Sub-Airy Confocal Adaptive Optics Scanning Ophthalmoscopy.
Transl Vis Sci Technol. 2018 Apr 4;7(2):17. doi: 10.1167/tvst.7.2.17. eCollection 2018 Apr.
7
Assessing Photoreceptor Structure in Retinitis Pigmentosa and Usher Syndrome.
Invest Ophthalmol Vis Sci. 2016 May 1;57(6):2428-42. doi: 10.1167/iovs.15-18246.
9
Multimodal Imaging of Photoreceptor Structure in Choroideremia.
PLoS One. 2016 Dec 9;11(12):e0167526. doi: 10.1371/journal.pone.0167526. eCollection 2016.
10
Adaptive optics scanning ophthalmoscopy with annular pupils.
Biomed Opt Express. 2012 Jul 1;3(7):1647-61. doi: 10.1364/BOE.3.001647. Epub 2012 Jun 20.

引用本文的文献

2
Deep compressed multichannel adaptive optics scanning light ophthalmoscope.
Sci Adv. 2025 May 9;11(19):eadr5912. doi: 10.1126/sciadv.adr5912.
3
Quantification of optical lensing by cellular structures in the living human eye.
Biomed Opt Express. 2025 Jan 7;16(2):473-498. doi: 10.1364/BOE.547734. eCollection 2025 Feb 1.
4
Ultrafast adaptive optics for imaging the living human eye.
Nat Commun. 2024 Nov 29;15(1):10409. doi: 10.1038/s41467-024-54687-z.
5
Improving cone identification using merged non-confocal quadrant-detection adaptive optics scanning light ophthalmoscope images.
Biomed Opt Express. 2024 Oct 2;15(11):6117-6135. doi: 10.1364/BOE.539001. eCollection 2024 Nov 1.
6
Minimum intensity projection of embossed quadrant-detection images for improved photoreceptor mosaic visualisation.
Front Ophthalmol (Lausanne). 2024 Mar 13;4:1349297. doi: 10.3389/fopht.2024.1349297. eCollection 2024.
7
Label-Free Imaging of Inflammation at the Level of Single Cells in the Living Human Eye.
Ophthalmol Sci. 2024 Jan 20;4(5):100475. doi: 10.1016/j.xops.2024.100475. eCollection 2024 Sep-Oct.
8
Twenty-five years of clinical applications using adaptive optics ophthalmoscopy [Invited].
Biomed Opt Express. 2022 Dec 20;14(1):387-428. doi: 10.1364/BOE.472274. eCollection 2023 Jan 1.
9
Hyalocyte origin, structure, and imaging.
Expert Rev Ophthalmol. 2022;17(4):233-248. doi: 10.1080/17469899.2022.2100762. Epub 2022 Sep 6.

本文引用的文献

1
Multimodal handheld adaptive optics scanning laser ophthalmoscope.
Opt Lett. 2020 Sep 1;45(17):4940-4943. doi: 10.1364/OL.402392.
2
Novel Heterozygous Deletion in Retinol Dehydrogenase 12 () Causes Familial Autosomal Dominant Retinitis Pigmentosa.
Front Genet. 2020 Apr 8;11:335. doi: 10.3389/fgene.2020.00335. eCollection 2020.
3
Interocular Symmetry of Foveal Cone Topography in Congenital Achromatopsia.
Curr Eye Res. 2020 Oct;45(10):1257-1264. doi: 10.1080/02713683.2020.1737138. Epub 2020 Mar 13.
4
Cone Structure Persists Beyond Margins of Short-Wavelength Autofluorescence in Choroideremia.
Invest Ophthalmol Vis Sci. 2019 Nov 1;60(14):4931-4942. doi: 10.1167/iovs.19-27979.
5
Accounting for focal shift in the Shack-Hartmann wavefront sensor.
Opt Lett. 2019 Sep 1;44(17):4151-4154. doi: 10.1364/OL.44.004151.
6
Long eye relief fundus camera and fixation target with partial correction of ocular longitudinal chromatic aberration.
Biomed Opt Express. 2018 Nov 7;9(12):6017-6037. doi: 10.1364/BOE.9.006017. eCollection 2018 Dec 1.
7
Assessing photoreceptor structure in patients with traumatic head injury.
BMJ Open Ophthalmol. 2018 Nov 24;3(1):e000104. doi: 10.1136/bmjophth-2017-000104. eCollection 2018.
9
Deep learning based detection of cone photoreceptors with multimodal adaptive optics scanning light ophthalmoscope images of achromatopsia.
Biomed Opt Express. 2018 Jul 18;9(8):3740-3756. doi: 10.1364/BOE.9.003740. eCollection 2018 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验