Clague M J, Schoch C, Blumenthal R
Section of Membrane Structure and Function, National Cancer Institute, Bethesda, Maryland 20892.
J Virol. 1991 May;65(5):2402-7. doi: 10.1128/JVI.65.5.2402-2407.1991.
We have studied the kinetics of low-pH-induced fusion between erythrocyte membranes and membranes containing influenza virus hemagglutinin by using assays based on the fluorescence dequenching of the lipophilic dye octadecylrhodamine. Stopped-flow mixing and fast data acquisition have been used to monitor the early stages of influenza virus fusion. We have compared this with the kinetics observed for fusion of an NIH 3T3 cell line, transformed with bovine papillomavirus, which constitutively expresses influenza virus hemagglutinin (GP4f cells). Virus and GP4f cells both display a pH-dependent time lag before the onset of fluorescence dequenching, but of an order of magnitude difference, ca. 2 s versus ca. 20 s. We have adopted two strategies to investigate whether the difference in lag time reflects the surface density of acid-activated hemagglutinin, able to undergo productive conformational change. (i) Hemagglutinin expressed on the cell surface requires proteolytic cleavage with trypsin from an inactive HAO form; we have limited the extent of proteolysis. (ii) We have used infection of CV-1 cells with a recombinant simian virus 40 bearing the influenza virus hemagglutinin gene. The surface expression of hemagglutinin is a function of time postinfection. For low-pH-induced fusion of both types of cell with erythrocytes, the lag time decreases with increasing hemagglutinin densities. Our results do not indicate a cooperative phenomenon at the level of the principal rate-determining step. We also show in the instance of virus fusion, that the magnitude of the delay time is a function of the target membrane transbilayer lipid distribution. We conclude that for a given amount of pH-activated hemagglutinin per unit area of membrane, the kinetics of fusion is determined by nonspecific physical properties of the membranes involved.
我们通过基于亲脂性染料十八烷基罗丹明荧光猝灭的测定方法,研究了低pH诱导的红细胞膜与含有流感病毒血凝素的膜之间的融合动力学。采用停流混合和快速数据采集来监测流感病毒融合的早期阶段。我们将此与用牛乳头瘤病毒转化的NIH 3T3细胞系(组成性表达流感病毒血凝素,即GP4f细胞)融合时观察到的动力学进行了比较。病毒和GP4f细胞在荧光猝灭开始前均表现出pH依赖性的时间延迟,但相差一个数量级,约2秒对约20秒。我们采用了两种策略来研究延迟时间的差异是否反映了能够发生有效构象变化的酸活化血凝素的表面密度。(i)细胞表面表达的血凝素需要用胰蛋白酶从无活性的HAO形式进行蛋白水解切割;我们限制了蛋白水解的程度。(ii)我们用携带流感病毒血凝素基因的重组猿猴病毒40感染CV-1细胞。血凝素的表面表达是感染后时间的函数。对于两种类型的细胞与红细胞的低pH诱导融合,延迟时间随着血凝素密度的增加而减少。我们的结果并未表明在主要速率决定步骤水平上存在协同现象。我们还在病毒融合的实例中表明,延迟时间的大小是靶膜跨双层脂质分布的函数。我们得出结论,对于每单位膜面积给定数量的pH活化血凝素,融合动力学由所涉及膜的非特异性物理性质决定。