Kao Ya-Ting, Tan Chuang, Song Sang-Hun, Oztürk Nuri, Li Jiang, Wang Lijuan, Sancar Aziz, Zhong Dongping
Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA.
J Am Chem Soc. 2008 Jun 18;130(24):7695-701. doi: 10.1021/ja801152h. Epub 2008 May 24.
We report here our systematic studies of the dynamics of four redox states of the flavin cofactor in both photolyases and insect type 1 cryptochromes. With femtosecond resolution, we observed ultrafast photoreduction of oxidized state flavin adenine dinucleotide (FAD) in subpicosecond and of neutral radical semiquinone (FADH()) in tens of picoseconds through intraprotein electron transfer mainly with a neighboring conserved tryptophan triad. Such ultrafast dynamics make these forms of flavin unlikely to be the functional states of the photolyase/cryptochrome family. In contrast, we find that upon excitation the anionic semiquinone (FAD(-)) and hydroquinone (FADH(-)) have longer lifetimes that are compatible with high-efficiency intermolecular electron transfer reactions. In photolyases, the excited active state (FADH(-)) has a long (nanosecond) lifetime optimal for DNA-repair function. In insect type 1 cryptochromes known to be blue-light photoreceptors the excited active form (FAD(-)*) has complex deactivation dynamics on the time scale from a few to hundreds of picoseconds, which is believed to occur through conical intersection(s) with a flexible bending motion to modulate the functional channel. These unique properties of anionic flavins suggest a universal mechanism of electron transfer for the initial functional steps of the photolyase/cryptochrome blue-light photoreceptor family.
我们在此报告对光解酶和昆虫1型隐花色素中黄素辅因子四种氧化还原状态动力学的系统研究。利用飞秒分辨率,我们观察到氧化态黄素腺嘌呤二核苷酸(FAD)在亚皮秒内的超快光还原,以及中性自由基半醌(FADH())在几十皮秒内通过主要与相邻保守色氨酸三联体的蛋白质内电子转移进行的超快光还原。这种超快动力学使得这些黄素形式不太可能是光解酶/隐花色素家族的功能状态。相比之下,我们发现激发后,阴离子半醌(FAD(-))和对苯二酚(FADH(-))具有更长的寿命,这与高效分子间电子转移反应相兼容。在光解酶中,激发的活性状态(FADH(-))具有长(纳秒)寿命,这对于DNA修复功能是最佳的。在已知为蓝光光感受器的昆虫1型隐花色素中,激发的活性形式(FAD(-)*)在从几皮秒到几百皮秒的时间尺度上具有复杂的失活动力学,据信这是通过与灵活弯曲运动的锥形交叉来调节功能通道而发生的。阴离子黄素的这些独特性质表明了光解酶/隐花色素蓝光光感受器家族初始功能步骤的电子转移通用机制。