Wang Po-Hsun, Hosokawa Yuhei, C Soares Jessica, Emmerich Hans-Joachim, Fuchs Valeri, Caramello Nicolas, Engilberge Sylvain, Bologna Andrea, Rosner Christian Joshua, Nakamura Mai, Watad Mohamed, Luo Fangjia, Owada Shigeki, Tosha Takehiko, Kang Jungmin, Tono Kensuke, Bessho Yoshitaka, Nango Eriko, Pierik Antonio J, Royant Antoine, Tsai Ming-Daw, Yamamoto Junpei, Maestre-Reyna Manuel, Essen Lars-Oliver
Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany.
Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan.
J Am Chem Soc. 2025 May 14;147(19):16084-16098. doi: 10.1021/jacs.4c18116. Epub 2025 Apr 29.
Photolyases repair UV damage to DNA by using absorbed blue light. Within the photolyase/cryptochrome superfamily (PCSf), a major subgroup consists of prokaryotic (6-4) photolyases. These enzymes rely on flavin adenine dinucleotide (FAD) as a catalytic cofactor, besides an ancillary antenna chromophore, and a [4Fe-4S] cluster with yet unknown function. For the prokaryotic 6-4 photolyase of , we investigated structural changes associated with its different redox states by damage-free crystallography using X-ray free-electron lasers. EPR and optical spectroscopy confirmed redox-dependent structural transitions, including the formation of an oxidized [4Fe-4S] cluster with the dynamic cleavage of a single iron-sulfur bond. Photoreduction to the catalytic FADH state alters the flavin binding site at the proximal aromatic pair Y390/F394 that is part of the electron transport pathway. Upon oxidation, the observable structural transitions of the protein matrix around the [4Fe-4S] cluster may affect DNA binding and are consistent with the much-debated role of the iron-sulfur cluster in DNA-binding proteins for quenching electron holes.
光解酶通过吸收蓝光修复DNA的紫外线损伤。在光解酶/隐花色素超家族(PCSf)中,一个主要亚组由原核(6-4)光解酶组成。除了一个辅助天线发色团和一个功能尚不清楚的[4Fe-4S]簇外,这些酶还依赖黄素腺嘌呤二核苷酸(FAD)作为催化辅因子。对于原核生物的6-4光解酶,我们使用X射线自由电子激光通过无损晶体学研究了与其不同氧化还原状态相关的结构变化。电子顺磁共振(EPR)和光谱学证实了氧化还原依赖性结构转变,包括形成一个氧化的[4Fe-4S]簇以及单个铁硫键的动态断裂。光还原到催化性FADH状态会改变近端芳香对Y390/F394处的黄素结合位点,该位点是电子传输途径的一部分。氧化时,[4Fe-4S]簇周围蛋白质基质的可观察到的结构转变可能会影响DNA结合,并且与铁硫簇在DNA结合蛋白中用于淬灭电子空穴的备受争议的作用一致。