Suppr超能文献

运动细胞中G-肌动蛋白转运的定量分析。

Quantitative analysis of G-actin transport in motile cells.

作者信息

Novak Igor L, Slepchenko Boris M, Mogilner Alex

机构信息

Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06030, USA.

出版信息

Biophys J. 2008 Aug;95(4):1627-38. doi: 10.1529/biophysj.108.130096. Epub 2008 May 23.

Abstract

Cell migration is based on an actin treadmill, which in turn depends on recycling of G-actin across the cell, from the rear where F-actin disassembles, to the front, where F-actin polymerizes. To analyze the rates of the actin transport, we used the Virtual Cell software to solve the diffusion-drift-reaction equations for the G-actin concentration in a realistic three-dimensional geometry of the motile cell. Numerical solutions demonstrate that F-actin disassembly at the cell rear and assembly at the front, along with diffusion, establish a G-actin gradient that transports G-actin forward "globally" across the lamellipod. Alternatively, if the F-actin assembly and disassembly are distributed throughout the lamellipod, F-/G-actin turnover is local, and diffusion plays little role. Chemical reactions and/or convective flow of cytoplasm of plausible magnitude affect the transport very little. Spatial distribution of G-actin is smooth and not sensitive to F-actin density fluctuations. Finally, we conclude that the cell body volume slows characteristic diffusion-related relaxation time in motile cell from approximately 10 to approximately 100 s. We discuss biological implications of the local and global regimes of the G-actin transport.

摘要

细胞迁移基于肌动蛋白踏车模型,而这又依赖于球形肌动蛋白(G-肌动蛋白)在细胞内的循环利用,即从丝状肌动蛋白(F-肌动蛋白)解聚的细胞后部,转运至F-肌动蛋白聚合的细胞前部。为了分析肌动蛋白的运输速率,我们使用虚拟细胞软件,在运动细胞的真实三维几何结构中求解G-肌动蛋白浓度的扩散-漂移-反应方程。数值解表明,细胞后部的F-肌动蛋白解聚和前部的组装,以及扩散作用,共同建立了一个G-肌动蛋白梯度,该梯度将G-肌动蛋白“整体地”向前运输穿过片状伪足。另外,如果F-肌动蛋白的组装和解聚分布在整个片状伪足中,F-/G-肌动蛋白的周转是局部性的,扩散作用则很小。合理量级的化学反应和/或细胞质对流对运输的影响非常小。G-肌动蛋白的空间分布是平滑的,且对F-肌动蛋白密度波动不敏感。最后,我们得出结论,细胞体体积使运动细胞中与扩散相关的特征弛豫时间从大约10秒减缓至大约100秒。我们讨论了G-肌动蛋白运输的局部和整体机制的生物学意义。

相似文献

1
Quantitative analysis of G-actin transport in motile cells.运动细胞中G-肌动蛋白转运的定量分析。
Biophys J. 2008 Aug;95(4):1627-38. doi: 10.1529/biophysj.108.130096. Epub 2008 May 23.
2
The physics of filopodial protrusion.丝状伪足突出的物理学
Biophys J. 2005 Aug;89(2):782-95. doi: 10.1529/biophysj.104.056515. Epub 2005 May 6.
3
New proposed mechanism of actin-polymerization-driven motility.肌动蛋白聚合驱动运动的新提出机制。
Biophys J. 2008 Nov 15;95(10):4529-39. doi: 10.1529/biophysj.108.134783. Epub 2008 Aug 15.
6
Mechanism of actin-based motility: a dynamic state diagram.基于肌动蛋白的运动机制:动态状态图
Biophys J. 2005 Aug;89(2):1411-9. doi: 10.1529/biophysj.104.055822. Epub 2005 May 27.
7
Dynamics and morphology of microvilli driven by actin polymerization.由肌动蛋白聚合驱动的微绒毛的动力学与形态学
Phys Rev Lett. 2006 Jul 7;97(1):018101. doi: 10.1103/PhysRevLett.97.018101. Epub 2006 Jul 5.
9
Actin-based propulsion of a microswimmer.基于肌动蛋白的微游动器推进
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jul;74(1 Pt 1):012901. doi: 10.1103/PhysRevE.74.012901. Epub 2006 Jul 21.
10
Nonlinear competition between asters and stripes in filament-motor systems.细丝-马达系统中星状体与条纹之间的非线性竞争。
Eur Phys J E Soft Matter. 2005 Sep;18(1):41-54. doi: 10.1140/epje/i2005-10029-3. Epub 2005 Oct 7.

引用本文的文献

5
Modelling actin polymerization: the effect on confined cell migration.建模肌动蛋白聚合:对受限细胞迁移的影响。
Biomech Model Mechanobiol. 2019 Aug;18(4):1177-1187. doi: 10.1007/s10237-019-01136-2. Epub 2019 Mar 1.

本文引用的文献

2
Mathematical modeling of cell migration.细胞迁移的数学建模
Methods Cell Biol. 2008;84:911-37. doi: 10.1016/S0091-679X(07)84029-5.
7
Cell surface actin remodeling.细胞表面肌动蛋白重塑
J Cell Sci. 2006 Aug 15;119(Pt 16):3261-4. doi: 10.1242/jcs.02994.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验