Ecole Centrale de Nantes, 1 Rue de la Noe, 44300 Nantes, France.
Laboratori de Calcul Numeric (LaCaN), Universitat Politécnica de Catalunya-BarcelonaTech (UPC), Barcelona, Spain.
Int J Numer Method Biomed Eng. 2018 Dec;34(12):e3143. doi: 10.1002/cnm.3143. Epub 2018 Oct 3.
Cells rely on an interplay of subcellular elements for motility and migration. Certain regions of motile cells, such as the lamellipodium, are made of a complex mixture of actin monomers and filaments, which polymerize at the front of the cell, close to the cell membrane, and depolymerize at the rear. The dynamic actin turnover induces the so-called intracellular retrograde flow, and it is a fundamental process for cell motility. Apart from some comprehensive mathematical models, the computational modelling of actin treadmilling has been based on simpler biophysical models. Here, we adopt a highly detailed theoretical model of the actin treadmilling process and develop a coupled unsteady finite element formulation. We clearly describe the structure and implementation of the coupled problem within the finite element method. Our numerical results show an excellent correlation with experimental results from literature and with previous models. We include time dependent effects and convective transport terms, which expose puzzling dynamics in the retrograde flow. We propose several biological scenarios to analyze the behavior of the actin treadmilling along space and time. We observed response times of the main density variables in the order of seconds. Compared with previous analytical solutions, which make assumptions related to convective transport, transient dynamics, and actin fluxes, the generic solution can have significant influence on the retrograde flow. All together, our results unveil a promising applicability of classical finite element methods to derive an in silico testing platform for the actin treadmilling processes in motile cells, which could allow for an extension to other biophysical effects.
细胞依赖于亚细胞元素的相互作用来实现运动和迁移。在运动细胞的某些区域,例如片状伪足,由肌动蛋白单体和纤维的复杂混合物组成,这些单体和纤维在靠近细胞膜的细胞前缘处聚合,并在细胞后部解聚。动态肌动蛋白周转率诱导了所谓的细胞内逆行流动,这是细胞运动的基本过程。除了一些综合的数学模型外,肌动蛋白踏车的计算建模还基于更简单的生物物理模型。在这里,我们采用了肌动蛋白踏车过程的高度详细的理论模型,并开发了一个耦合的非定常有限元公式。我们在有限元方法中清楚地描述了耦合问题的结构和实现。我们的数值结果与文献中的实验结果和以前的模型有很好的相关性。我们包括时间相关效应和对流输运项,这揭示了逆行流中的令人费解的动力学。我们提出了几种生物学情景来分析沿空间和时间的肌动蛋白踏车的行为。我们观察到主要密度变量的响应时间在秒级范围内。与以前的分析解相比,该解假设了对流输运、瞬态动力学和肌动蛋白通量,通用解对逆行流有显著影响。总之,我们的结果揭示了经典有限元方法在推导用于运动细胞中肌动蛋白踏车过程的计算机测试平台方面的有希望的适用性,这可能允许扩展到其他生物物理效应。