Song Dong, Wang Zhuo, Marmarelis Vasilis Z, Berger Theodore W
Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
J Comput Neurosci. 2009 Feb;26(1):21-37. doi: 10.1007/s10827-008-0098-2. Epub 2008 May 27.
This paper presents a synergistic parametric and non-parametric modeling study of short-term plasticity (STP) in the Schaffer collateral to hippocampal CA1 pyramidal neuron (SC) synapse. Parametric models in the form of sets of differential and algebraic equations have been proposed on the basis of the current understanding of biological mechanisms active within the system. Non-parametric Poisson-Volterra models are obtained herein from broadband experimental input-output data. The non-parametric model is shown to provide better prediction of the experimental output than a parametric model with a single set of facilitation/depression (FD) process. The parametric model is then validated in terms of its input-output transformational properties using the non-parametric model since the latter constitutes a canonical and more complete representation of the synaptic nonlinear dynamics. Furthermore, discrepancies between the experimentally-derived non-parametric model and the equivalent non-parametric model of the parametric model suggest the presence of multiple FD processes in the SC synapses. Inclusion of an additional set of FD process in the parametric model makes it replicate better the characteristics of the experimentally-derived non-parametric model. This improved parametric model in turn provides the requisite biological interpretability that the non-parametric model lacks.
本文介绍了一项关于海马体CA1锥体神经元(SC)突触中谢弗侧支短期可塑性(STP)的协同参数和非参数建模研究。基于对系统内活跃生物机制的当前理解,提出了以微分方程和代数方程组形式的参数模型。本文从宽带实验输入 - 输出数据中获得了非参数泊松 - 沃尔泰拉模型。结果表明,与具有单一组易化/抑制(FD)过程的参数模型相比,非参数模型能更好地预测实验输出。由于非参数模型构成了突触非线性动力学的规范且更完整的表示,因此使用非参数模型根据其输入 - 输出变换特性对参数模型进行了验证。此外,实验得出的非参数模型与参数模型的等效非参数模型之间的差异表明SC突触中存在多个FD过程。在参数模型中纳入另一组FD过程使其能更好地复制实验得出的非参数模型的特征。反过来,这种改进的参数模型提供了非参数模型所缺乏的必要生物学可解释性。