Suppr超能文献

短期抑郁和长期可塑性共同调节突触可塑性的敏感范围。

Short-term depression and long-term plasticity together tune sensitive range of synaptic plasticity.

机构信息

Université de Paris, CNRS, SPPIN - Saints-Pères Paris Institute for the Neurosciences, F-75006 Paris, France.

出版信息

PLoS Comput Biol. 2020 Sep 25;16(9):e1008265. doi: 10.1371/journal.pcbi.1008265. eCollection 2020 Sep.

Abstract

Synaptic efficacy is subjected to activity-dependent changes on short- and long time scales. While short-term changes decay over minutes, long-term modifications last from hours up to a lifetime and are thought to constitute the basis of learning and memory. Both plasticity mechanisms have been studied extensively but how their interaction shapes synaptic dynamics is little known. To investigate how both short- and long-term plasticity together control the induction of synaptic depression and potentiation, we used numerical simulations and mathematical analysis of a calcium-based model, where pre- and postsynaptic activity induces calcium transients driving synaptic long-term plasticity. We found that the model implementing known synaptic short-term dynamics in the calcium transients can be successfully fitted to long-term plasticity data obtained in visual- and somatosensory cortex. Interestingly, the impact of spike-timing and firing rate changes on plasticity occurs in the prevalent firing rate range, which is different in both cortical areas considered here. Our findings suggest that short- and long-term plasticity are together tuned to adapt plasticity to area-specific activity statistics such as firing rates.

摘要

突触效能会在短时间和长时间尺度上发生依赖于活动的变化。虽然短期变化会在数分钟内衰减,但长期的修饰则会持续数小时甚至一生,被认为是学习和记忆的基础。这两种可塑性机制都得到了广泛的研究,但它们的相互作用如何塑造突触动力学还知之甚少。为了研究短期和长期可塑性如何共同控制突触抑制和增强的诱导,我们使用基于钙的模型进行数值模拟和数学分析,其中突触前和突触后活动诱导钙瞬变,从而驱动突触的长期可塑性。我们发现,在钙瞬变中实现已知的突触短期动力学的模型可以成功拟合在视觉和体感皮层中获得的长期可塑性数据。有趣的是,尖峰定时和放电率变化对可塑性的影响发生在普遍的放电率范围内,而在这两个考虑的皮层区域中,这个范围是不同的。我们的研究结果表明,短期和长期可塑性是一起被调整的,以适应特定区域的活动统计,如放电率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03c8/7549837/9bb67bc4226c/pcbi.1008265.g001.jpg

相似文献

1
Short-term depression and long-term plasticity together tune sensitive range of synaptic plasticity.
PLoS Comput Biol. 2020 Sep 25;16(9):e1008265. doi: 10.1371/journal.pcbi.1008265. eCollection 2020 Sep.
3
Astrocyte-mediated spike-timing-dependent long-term depression modulates synaptic properties in the developing cortex.
PLoS Comput Biol. 2020 Nov 10;16(11):e1008360. doi: 10.1371/journal.pcbi.1008360. eCollection 2020 Nov.
4
Natural Firing Patterns Imply Low Sensitivity of Synaptic Plasticity to Spike Timing Compared with Firing Rate.
J Neurosci. 2016 Nov 2;36(44):11238-11258. doi: 10.1523/JNEUROSCI.0104-16.2016.
5
Rate, timing, and cooperativity jointly determine cortical synaptic plasticity.
Neuron. 2001 Dec 20;32(6):1149-64. doi: 10.1016/s0896-6273(01)00542-6.
6
Asymmetric spike-timing dependent plasticity of striatal nitric oxide-synthase interneurons.
Neuroscience. 2009 Jun 2;160(4):744-54. doi: 10.1016/j.neuroscience.2009.03.015. Epub 2009 Mar 19.
7
Tag-trigger-consolidation: a model of early and late long-term-potentiation and depression.
PLoS Comput Biol. 2008 Dec;4(12):e1000248. doi: 10.1371/journal.pcbi.1000248. Epub 2008 Dec 26.
8
Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location.
Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3991-6. doi: 10.1073/pnas.1109359109. Epub 2012 Feb 22.
10

引用本文的文献

2
Heterointerface-Modulated Synthetic Synapses Exhibiting Complex Multiscale Plasticity.
Adv Sci (Weinh). 2025 Aug;12(30):e17237. doi: 10.1002/advs.202417237. Epub 2025 May 20.
4
Temperature effect on a weighted vortex spin-torque nano-oscillator for neuromorphic computing.
Sci Rep. 2024 May 2;14(1):10043. doi: 10.1038/s41598-024-60929-3.
5
Making time and space for calcium control of neuron activity.
Curr Opin Neurobiol. 2023 Dec;83:102804. doi: 10.1016/j.conb.2023.102804. Epub 2023 Oct 31.
8
Computational modeling of AMPK and mTOR crosstalk in glutamatergic synapse calcium signaling.
NPJ Syst Biol Appl. 2023 Jul 17;9(1):34. doi: 10.1038/s41540-023-00295-4.
9
An in silico and in vitro human neuronal network model reveals cellular mechanisms beyond Na1.1 underlying Dravet syndrome.
Stem Cell Reports. 2023 Aug 8;18(8):1686-1700. doi: 10.1016/j.stemcr.2023.06.003. Epub 2023 Jul 6.

本文引用的文献

1
Hebbian plasticity requires compensatory processes on multiple timescales.
Philos Trans R Soc Lond B Biol Sci. 2017 Mar 5;372(1715). doi: 10.1098/rstb.2016.0259.
2
Natural Firing Patterns Imply Low Sensitivity of Synaptic Plasticity to Spike Timing Compared with Firing Rate.
J Neurosci. 2016 Nov 2;36(44):11238-11258. doi: 10.1523/JNEUROSCI.0104-16.2016.
3
Burst-Dependent Bidirectional Plasticity in the Cerebellum Is Driven by Presynaptic NMDA Receptors.
Cell Rep. 2016 Apr 5;15(1):104-116. doi: 10.1016/j.celrep.2016.03.004. Epub 2016 Mar 24.
4
A Voltage-Based STDP Rule Combined with Fast BCM-Like Metaplasticity Accounts for LTP and Concurrent "Heterosynaptic" LTD in the Dentate Gyrus In Vivo.
PLoS Comput Biol. 2015 Nov 6;11(11):e1004588. doi: 10.1371/journal.pcbi.1004588. eCollection 2015 Nov.
7
Memory maintenance in synapses with calcium-based plasticity in the presence of background activity.
PLoS Comput Biol. 2014 Oct 2;10(10):e1003834. doi: 10.1371/journal.pcbi.1003834. eCollection 2014 Oct.
8
Theoretical models of synaptic short term plasticity.
Front Comput Neurosci. 2013 Apr 19;7:45. doi: 10.3389/fncom.2013.00045. eCollection 2013.
10
Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location.
Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3991-6. doi: 10.1073/pnas.1109359109. Epub 2012 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验