Université de Paris, CNRS, SPPIN - Saints-Pères Paris Institute for the Neurosciences, F-75006 Paris, France.
PLoS Comput Biol. 2020 Sep 25;16(9):e1008265. doi: 10.1371/journal.pcbi.1008265. eCollection 2020 Sep.
Synaptic efficacy is subjected to activity-dependent changes on short- and long time scales. While short-term changes decay over minutes, long-term modifications last from hours up to a lifetime and are thought to constitute the basis of learning and memory. Both plasticity mechanisms have been studied extensively but how their interaction shapes synaptic dynamics is little known. To investigate how both short- and long-term plasticity together control the induction of synaptic depression and potentiation, we used numerical simulations and mathematical analysis of a calcium-based model, where pre- and postsynaptic activity induces calcium transients driving synaptic long-term plasticity. We found that the model implementing known synaptic short-term dynamics in the calcium transients can be successfully fitted to long-term plasticity data obtained in visual- and somatosensory cortex. Interestingly, the impact of spike-timing and firing rate changes on plasticity occurs in the prevalent firing rate range, which is different in both cortical areas considered here. Our findings suggest that short- and long-term plasticity are together tuned to adapt plasticity to area-specific activity statistics such as firing rates.
突触效能会在短时间和长时间尺度上发生依赖于活动的变化。虽然短期变化会在数分钟内衰减,但长期的修饰则会持续数小时甚至一生,被认为是学习和记忆的基础。这两种可塑性机制都得到了广泛的研究,但它们的相互作用如何塑造突触动力学还知之甚少。为了研究短期和长期可塑性如何共同控制突触抑制和增强的诱导,我们使用基于钙的模型进行数值模拟和数学分析,其中突触前和突触后活动诱导钙瞬变,从而驱动突触的长期可塑性。我们发现,在钙瞬变中实现已知的突触短期动力学的模型可以成功拟合在视觉和体感皮层中获得的长期可塑性数据。有趣的是,尖峰定时和放电率变化对可塑性的影响发生在普遍的放电率范围内,而在这两个考虑的皮层区域中,这个范围是不同的。我们的研究结果表明,短期和长期可塑性是一起被调整的,以适应特定区域的活动统计,如放电率。