Mansson Alf, Balaz Martina, Albet-Torres Nuria, Rosengren K Johan
School of Pure and Applied Natural Sciences, University of Kalmar, SE-391 82 Kalmar, Sweden.
Front Biosci. 2008 May 1;13:5732-54. doi: 10.2741/3112.
In many types of biophysical studies of both single molecules and ensembles of molecular motors the motors are adsorbed to artificial surfaces. Some of the most important assay systems of this type (in vitro motility assays and related single molecule techniques) will be briefly described together with an account of breakthroughs in the understanding of actomyosin function that have resulted from their use. A poorly characterized, but potentially important, entity in these studies is the mechanism of motor adsorption to surfaces and the effects of motor surface interactions on experimental results. A better understanding of these phenomena is also important for the development of commercially viable nanotechnological applications powered by molecular motors. Here, we will consider several aspects of motor surface interactions with a particular focus on heavy meromyosin (HMM) from skeletal muscle. These aspects will be related to heavy meromyosin structure and relevant parts of the vast literature on protein-surface interactions for non-motor proteins. An overview of methods for studying motor-surface interactions will also be given. The information is used as a basis for further development of a model for HMM-surface interactions and is discussed in relation to experiments where nanopatterning has been employed for in vitro reconstruction of actomyosin order. The challenges and potentials of this approach in biophysical studies, compared to the use of self-assembly of biological components into supramolecular protein aggregates (e.g. myosin filaments) will be considered. Finally, this review will consider the implications for further developments of motor-powered lab-on-a-chip devices.
在对单分子和分子马达集合体进行的多种生物物理研究中,马达被吸附到人工表面。将简要介绍一些这类最重要的检测系统(体外运动检测及相关单分子技术),并说明因使用这些技术而在肌动球蛋白功能理解方面取得的突破。在这些研究中,一个特征描述不足但可能很重要的因素是马达吸附到表面的机制以及马达与表面相互作用对实验结果的影响。更好地理解这些现象对于开发由分子马达驱动的具有商业可行性的纳米技术应用也很重要。在此,我们将考虑马达与表面相互作用的几个方面,特别关注骨骼肌中的重酶解肌球蛋白(HMM)。这些方面将与重酶解肌球蛋白的结构以及关于非马达蛋白的蛋白质 - 表面相互作用的大量文献中的相关部分联系起来。还将给出研究马达 - 表面相互作用的方法概述。这些信息被用作进一步开发重酶解肌球蛋白 - 表面相互作用模型的基础,并结合使用纳米图案化进行肌动球蛋白排列的体外重建的实验进行讨论。与将生物成分自组装成超分子蛋白质聚集体(如肌球蛋白丝)相比,将考虑这种方法在生物物理研究中的挑战和潜力。最后,本综述将考虑对由马达驱动的芯片实验室设备进一步发展的影响。