Hodge James J, Stanewsky Ralf
Department of Physiology and Pharmacology, School of Medical Sciences, Bristol University, Bristol, United Kingdom.
PLoS One. 2008 May 28;3(5):e2274. doi: 10.1371/journal.pone.0002274.
In addition to the molecular feedback loops, electrical activity has been shown to be important for the function of networks of clock neurons in generating rhythmic behavior. Most studies have used over-expression of foreign channels or pharmacological manipulations that alter membrane excitability. In order to determine the cellular mechanisms that regulate resting membrane potential (RMP) in the native clock of Drosophila we modulated the function of Shaw, a widely expressed neuronal potassium (K(+)) channel known to regulate RMP in Drosophila central neurons.
METHODOLOGY/PRINCIPAL FINDINGS: We show that Shaw is endogenously expressed in clock neurons. Differential use of clock gene promoters was employed to express a range of transgenes that either increase or decrease Shaw function in different clusters of clock neurons. Under LD conditions, increasing Shaw levels in all clock neurons (LNv, LNd, DN(1), DN(2) and DN(3)), or in subsets of clock neurons (LNd and DNs or DNs alone) increases locomotor activity at night. In free-running conditions these manipulations result in arrhythmic locomotor activity without disruption of the molecular clock. Reducing Shaw in the DN alone caused a dramatic lengthening of the behavioral period. Changing Shaw levels in all clock neurons also disrupts the rhythmic accumulation and levels of Pigment Dispersing Factor (PDF) in the dorsal projections of LNv neurons. However, changing Shaw levels solely in LNv neurons had little effect on locomotor activity or rhythmic accumulation of PDF.
CONCLUSIONS/SIGNIFICANCE: Based on our results it is likely that Shaw modulates pacemaker and output neuronal electrical activity that controls circadian locomotor behavior by affecting rhythmic release of PDF. The results support an important role of the DN clock neurons in Shaw-mediated control of circadian behavior. In conclusion, we have demonstrated a central role of Shaw for coordinated and rhythmic output from clock neurons.
除了分子反馈回路外,电活动对于生物钟神经元网络产生节律性行为的功能也很重要。大多数研究使用外源通道的过表达或改变膜兴奋性的药理学操作。为了确定调节果蝇天然生物钟静息膜电位(RMP)的细胞机制,我们调节了Shaw的功能,Shaw是一种广泛表达的神经元钾(K(+))通道,已知其可调节果蝇中枢神经元的RMP。
方法/主要发现:我们发现Shaw在生物钟神经元中内源性表达。利用生物钟基因启动子的差异使用来表达一系列转基因,这些转基因可增加或降低不同生物钟神经元簇中Shaw的功能。在光暗(LD)条件下,增加所有生物钟神经元(LNv、LNd、DN(1)、DN(2)和DN(3))或生物钟神经元亚群(LNd和DNs或仅DNs)中的Shaw水平会增加夜间的运动活性。在自由运行条件下,这些操作会导致无规律的运动活性,而不会破坏分子生物钟。仅在DNs中降低Shaw会导致行为周期显著延长。改变所有生物钟神经元中的Shaw水平也会破坏LNv神经元背侧投射中色素分散因子(PDF)的节律性积累和水平。然而,仅改变LNv神经元中的Shaw水平对运动活性或PDF的节律性积累影响很小。
结论/意义:基于我们研究结果,Shaw可能通过影响PDF的节律性释放来调节起搏器和输出神经元的电活动,从而控制昼夜节律性运动行为。这些结果支持了DN生物钟神经元在Shaw介导的昼夜节律行为控制中的重要作用。总之,我们证明了Shaw在生物钟神经元协调和节律性输出中的核心作用。