Suppr超能文献

非 LNv 时钟细胞中的神经元活动是产生自由运行休息所必需的:果蝇中的活动节律。

Neuronal Activity in Non-LNv Clock Cells Is Required to Produce Free-Running Rest:Activity Rhythms in Drosophila.

机构信息

Department of Biology, Loyola University, Chicago, IL, USA.

出版信息

J Biol Rhythms. 2019 Jun;34(3):249-271. doi: 10.1177/0748730419841468. Epub 2019 Apr 17.

Abstract

Circadian rhythms in behavior and physiology are produced by central brain clock neurons that can be divided into subpopulations based on molecular and functional characteristics. It has become clear that coherent behavioral rhythms result from the coordinated action of these clock neuron populations, but many questions remain regarding the organizational logic of the clock network. Here we used targeted genetic tools in Drosophila to eliminate either molecular clock function or neuronal activity in discrete clock neuron subsets. We find that neuronal firing is necessary across multiple clock cell populations to produce free-running rhythms of rest and activity. In contrast, such rhythms are much more subtly affected by molecular clock suppression in the same cells. These findings demonstrate that network connectivity can compensate for a lack of molecular oscillations within subsets of clock cells. We further show that small ventrolateral (sLNv) clock neurons, which have been characterized as master pacemakers under free-running conditions, cannot drive rhythms independent of communication between other cells of the clock network. In particular, we pinpoint an essential contribution of the dorsolateral (LNd) clock neurons, and show that manipulations that affect LNd function reduce circadian rhythm strength without affecting molecular cycling in sLNv cells. These results suggest a hierarchical organization in which circadian information is first consolidated among one or more clock cell populations before accessing output pathways that control locomotor activity.

摘要

行为和生理的昼夜节律是由中枢脑时钟神经元产生的,这些神经元可以根据分子和功能特征分为亚群。很明显,协调的行为节律是这些时钟神经元群体协调作用的结果,但关于时钟网络的组织逻辑仍有许多问题需要解决。在这里,我们使用果蝇中的靶向遗传工具消除了离散时钟神经元亚群中的分子时钟功能或神经元活性。我们发现,多个时钟细胞群体中的神经元放电对于产生休息和活动的自由运行节律是必需的。相比之下,在相同的细胞中抑制分子时钟对这些节律的影响要微妙得多。这些发现表明,网络连接性可以弥补时钟细胞亚群中分子振荡的缺乏。我们进一步表明,在自由运行条件下被表征为主起搏器的小腹外侧(sLNv)时钟神经元不能独立于时钟网络的其他细胞之间的通信来驱动节律。特别是,我们确定了背外侧(LNd)时钟神经元的重要贡献,并表明影响 LNd 功能的操作会降低生物钟节律强度,而不会影响 sLNv 细胞中的分子循环。这些结果表明,在生物钟信息进入控制运动活动的输出途径之前,它首先在一个或多个时钟细胞群体之间得到整合。

相似文献

1
Neuronal Activity in Non-LNv Clock Cells Is Required to Produce Free-Running Rest:Activity Rhythms in Drosophila.
J Biol Rhythms. 2019 Jun;34(3):249-271. doi: 10.1177/0748730419841468. Epub 2019 Apr 17.
2
Overlapping Central Clock Network Circuitry Regulates Circadian Feeding and Activity Rhythms in Drosophila.
J Biol Rhythms. 2024 Oct;39(5):440-462. doi: 10.1177/07487304241263734. Epub 2024 Jul 26.
3
Drosophila free-running rhythms require intercellular communication.
PLoS Biol. 2003 Oct;1(1):E13. doi: 10.1371/journal.pbio.0000013. Epub 2003 Sep 15.
4
A Screening of UNF Targets Identifies , a Novel Regulator of Circadian Rhythms.
J Neurosci. 2017 Jul 12;37(28):6673-6685. doi: 10.1523/JNEUROSCI.3286-16.2017. Epub 2017 Jun 7.
6
Central and Peripheral Clock Control of Circadian Feeding Rhythms.
J Biol Rhythms. 2021 Dec;36(6):548-566. doi: 10.1177/07487304211045835. Epub 2021 Sep 22.
7
Shaw and Shal voltage-gated potassium channels mediate circadian changes in Drosophila clock neuron excitability.
J Physiol. 2019 Dec;597(23):5707-5722. doi: 10.1113/JP278826. Epub 2019 Nov 13.
8
Function of the Shaw potassium channel within the Drosophila circadian clock.
PLoS One. 2008 May 28;3(5):e2274. doi: 10.1371/journal.pone.0002274.
10
Electrical silencing of PDF neurons advances the phase of non-PDF clock neurons in Drosophila.
J Biol Rhythms. 2008 Apr;23(2):117-28. doi: 10.1177/0748730407312984.

引用本文的文献

1
The cell-intrinsic circadian clock is dispensable for lateral posterior clock neuron regulation of rest-activity rhythms.
Neurobiol Sleep Circadian Rhythms. 2025 Apr 28;18:100124. doi: 10.1016/j.nbscr.2025.100124. eCollection 2025 May.
2
Circadian rhythms are more resilient to pacemaker neuron disruption in female Drosophila.
PLoS Biol. 2025 May 6;23(5):e3003146. doi: 10.1371/journal.pbio.3003146. eCollection 2025 May.
3
Reorganization of circadian activity and the pacemaker circuit under novel light regimes.
Proc Biol Sci. 2024 Aug;291(2027):20241190. doi: 10.1098/rspb.2024.1190. Epub 2024 Jul 24.
4
A subclass of evening cells promotes the switch from arousal to sleep at dusk.
Curr Biol. 2024 May 20;34(10):2186-2199.e3. doi: 10.1016/j.cub.2024.04.039. Epub 2024 May 8.
5
Dissecting neuron-specific functions of circadian genes using modified cell-specific CRISPR approaches.
Proc Natl Acad Sci U S A. 2023 Jul 18;120(29):e2303779120. doi: 10.1073/pnas.2303779120. Epub 2023 Jul 10.
6
A four-oscillator model of seasonally adapted morning and evening activities in Drosophila melanogaster.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2024 Jul;210(4):527-534. doi: 10.1007/s00359-023-01639-5. Epub 2023 May 23.
7
Dopamine and GPCR-mediated modulation of DN1 clock neurons gates the circadian timing of sleep.
Proc Natl Acad Sci U S A. 2022 Aug 23;119(34):e2206066119. doi: 10.1073/pnas.2206066119. Epub 2022 Aug 15.
9
Entrainment of the clock by the visual system.
Neurosci Insights. 2020 Feb 5;15:2633105520903708. doi: 10.1177/2633105520903708. eCollection 2020.
10
Central and Peripheral Clock Control of Circadian Feeding Rhythms.
J Biol Rhythms. 2021 Dec;36(6):548-566. doi: 10.1177/07487304211045835. Epub 2021 Sep 22.

本文引用的文献

2
Generation of circadian rhythms in the suprachiasmatic nucleus.
Nat Rev Neurosci. 2018 Aug;19(8):453-469. doi: 10.1038/s41583-018-0026-z.
3
Reconfiguration of a Multi-oscillator Network by Light in the Drosophila Circadian Clock.
Curr Biol. 2018 Jul 9;28(13):2007-2017.e4. doi: 10.1016/j.cub.2018.04.064. Epub 2018 Jun 14.
4
Temporal calcium profiling of specific circadian neurons in freely moving flies.
Proc Natl Acad Sci U S A. 2017 Oct 10;114(41):E8780-E8787. doi: 10.1073/pnas.1706608114. Epub 2017 Sep 26.
5
A Series of Suppressive Signals within the Drosophila Circadian Neural Circuit Generates Sequential Daily Outputs.
Neuron. 2017 Jun 21;94(6):1173-1189.e4. doi: 10.1016/j.neuron.2017.05.007. Epub 2017 May 25.
6
Circadian Rhythms and Sleep in .
Genetics. 2017 Apr;205(4):1373-1397. doi: 10.1534/genetics.115.185157.
7
RNA-seq analysis of Drosophila clock and non-clock neurons reveals neuron-specific cycling and novel candidate neuropeptides.
PLoS Genet. 2017 Feb 9;13(2):e1006613. doi: 10.1371/journal.pgen.1006613. eCollection 2017 Feb.
9
10
Circadian rhythms in neuronal activity propagate through output circuits.
Nat Neurosci. 2016 Apr;19(4):587-95. doi: 10.1038/nn.4263. Epub 2016 Feb 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验