Suppr超能文献

细菌载色体中光合蛋白的固有曲率特性

Intrinsic curvature properties of photosynthetic proteins in chromatophores.

作者信息

Chandler Danielle E, Hsin Jen, Harrison Christopher B, Gumbart James, Schulten Klaus

机构信息

Department of Physics, University of Illinois at Urbana-Champaign, USA.

出版信息

Biophys J. 2008 Sep 15;95(6):2822-36. doi: 10.1529/biophysj.108.132852. Epub 2008 May 30.

Abstract

In purple bacteria, photosynthesis is carried out on large indentations of the bacterial plasma membrane termed chromatophores. Acting as primitive organelles, chromatophores are densely packed with the membrane proteins necessary for photosynthesis, including light harvesting complexes LH1 and LH2, reaction center (RC), and cytochrome bc(1). The shape of chromatophores is primarily dependent on species, and is typically spherical or flat. How these shapes arise from the protein-protein and protein-membrane interactions is still unknown. Now, using molecular dynamics simulations, we have observed the dynamic curvature of membranes caused by proteins in the chromatophore. A membrane-embedded array of LH2s was found to relax to a curved state, both for LH2 from Rps. acidophila and a homology-modeled LH2 from Rb. sphaeroides. A modeled LH1-RC-PufX dimer was found to develop a bend at the dimerizing interface resulting in a curved shape as well. In contrast, the bc(1) complex, which has not been imaged yet in native chromatophores, did not induce a preferred membrane curvature in simulation. Based on these results, a model for how the different photosynthetic proteins influence chromatophore shape is presented.

摘要

在紫色细菌中,光合作用在被称为载色体的细菌质膜的大凹陷处进行。作为原始细胞器,载色体密集地排列着光合作用所需的膜蛋白,包括光捕获复合体LH1和LH2、反应中心(RC)以及细胞色素bc(1)。载色体的形状主要取决于物种,通常为球形或扁平形。这些形状是如何由蛋白质-蛋白质和蛋白质-膜相互作用产生的仍然未知。现在,通过分子动力学模拟,我们观察到了载色体中蛋白质引起的膜的动态曲率。对于嗜酸红假单胞菌的LH2和球形红杆菌的同源建模LH2,发现嵌入膜中的LH2阵列会松弛到弯曲状态。还发现一个建模的LH1-RC-PufX二聚体在二聚化界面处形成弯曲,从而也导致弯曲形状。相比之下,尚未在天然载色体中成像的bc(1)复合体在模拟中未诱导出优先的膜曲率。基于这些结果,提出了一个关于不同光合蛋白如何影响载色体形状的模型。

相似文献

1
Intrinsic curvature properties of photosynthetic proteins in chromatophores.细菌载色体中光合蛋白的固有曲率特性
Biophys J. 2008 Sep 15;95(6):2822-36. doi: 10.1529/biophysj.108.132852. Epub 2008 May 30.
5
Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle.细菌光合膜囊泡的原子级结构与功能模型
Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15723-8. doi: 10.1073/pnas.0706861104. Epub 2007 Sep 25.
6
Native architecture of the photosynthetic membrane from Rhodobacter veldkampii.源自荚膜红细菌光合膜的天然结构。
J Struct Biol. 2011 Jan;173(1):138-45. doi: 10.1016/j.jsb.2010.08.010. Epub 2010 Aug 24.

引用本文的文献

2
Origin and evolution of mitochondrial inner membrane composition.线粒体内膜成分的起源与演化
J Cell Sci. 2025 May 1;138(9). doi: 10.1242/jcs.263780. Epub 2025 Apr 23.
9
Biophysics of membrane curvature remodeling at molecular and mesoscopic lengthscales.膜曲率重构的生物物理:从分子到介观尺度。
J Phys Condens Matter. 2018 Jul 11;30(27):273001. doi: 10.1088/1361-648X/aac702. Epub 2018 May 22.
10
Membrane remodelling in bacteria.细菌中的膜重塑
J Struct Biol. 2016 Oct;196(1):3-14. doi: 10.1016/j.jsb.2016.05.010. Epub 2016 Jun 2.

本文引用的文献

2
Four-scale description of membrane sculpting by BAR domains.BAR结构域对膜塑形的四级描述。
Biophys J. 2008 Sep 15;95(6):2806-21. doi: 10.1529/biophysj.108.132563. Epub 2008 May 30.
6
Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle.细菌光合膜囊泡的原子级结构与功能模型
Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15723-8. doi: 10.1073/pnas.0706861104. Epub 2007 Sep 25.
9
Influence of rigid inclusions on the bending elasticity of a lipid membrane.刚性内含物对脂质膜弯曲弹性的影响。
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Nov;74(5 Pt 1):051503. doi: 10.1103/PhysRevE.74.051503. Epub 2006 Nov 7.
10
The solution structure of the PufX polypeptide from Rhodobacter sphaeroides.球形红细菌中PufX多肽的溶液结构。
FEBS Lett. 2006 Dec 22;580(30):6967-71. doi: 10.1016/j.febslet.2006.11.065. Epub 2006 Dec 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验