Suppr超能文献

细菌光合膜囊泡的原子级结构与功能模型

Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle.

作者信息

Sener Melih K, Olsen John D, Hunter C Neil, Schulten Klaus

机构信息

Beckman Institute and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

出版信息

Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15723-8. doi: 10.1073/pnas.0706861104. Epub 2007 Sep 25.

Abstract

The photosynthetic unit (PSU) of purple photosynthetic bacteria consists of a network of bacteriochlorophyll-protein complexes that absorb solar energy for eventual conversion to ATP. Because of its remarkable simplicity, the PSU can serve as a prototype for studies of cellular organelles. In the purple bacterium Rhodobacter sphaeroides the PSU forms spherical invaginations of the inner membrane, approximately 70 nm in diameter, composed mostly of light-harvesting complexes, LH1 and LH2, and reaction centers (RCs). Atomic force microscopy studies of the intracytoplasmic membrane have revealed the overall spatial organization of the PSU. In the present study these atomic force microscopy data were used to construct three-dimensional models of an entire membrane vesicle at the atomic level by using the known structure of the LH2 complex and a structural model of the dimeric RC-LH1 complex. Two models depict vesicles consisting of 9 or 18 dimeric RC-LH1 complexes and 144 or 101 LH2 complexes, representing a total of 3,879 or 4,464 bacteriochlorophylls, respectively. The in silico reconstructions permit a detailed description of light absorption and electronic excitation migration, including computation of a 50-ps excitation lifetime and a 95% quantum efficiency for one of the model membranes, and demonstration of excitation sharing within the closely packed RC-LH1 dimer arrays.

摘要

紫色光合细菌的光合单位(PSU)由细菌叶绿素 - 蛋白质复合物网络组成,该网络吸收太阳能最终转化为ATP。由于其显著的简单性,光合单位可作为细胞器研究的原型。在紫色细菌球形红杆菌中,光合单位在内膜上形成直径约70纳米的球形内陷,主要由捕光复合物LH1和LH2以及反应中心(RC)组成。对胞内膜的原子力显微镜研究揭示了光合单位的整体空间组织。在本研究中,利用LH2复合物的已知结构和二聚体RC - LH1复合物的结构模型,这些原子力显微镜数据被用于在原子水平构建整个膜囊泡的三维模型。两个模型描绘了由9个或18个二聚体RC - LH1复合物和144个或101个LH2复合物组成的囊泡,分别代表总共3879个或4464个细菌叶绿素。计算机模拟重建允许对光吸收和电子激发迁移进行详细描述,包括计算其中一个模型膜的50皮秒激发寿命和95%的量子效率,并证明在紧密堆积的RC - LH1二聚体阵列内的激发共享。

相似文献

1
Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle.细菌光合膜囊泡的原子级结构与功能模型
Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15723-8. doi: 10.1073/pnas.0706861104. Epub 2007 Sep 25.
9
Intrinsic curvature properties of photosynthetic proteins in chromatophores.细菌载色体中光合蛋白的固有曲率特性
Biophys J. 2008 Sep 15;95(6):2822-36. doi: 10.1529/biophysj.108.132852. Epub 2008 May 30.

引用本文的文献

6
A Chirality-Based Quantum Leap.基于手性的量子飞跃。
ACS Nano. 2022 Apr 26;16(4):4989-5035. doi: 10.1021/acsnano.1c01347. Epub 2022 Mar 23.

本文引用的文献

4
THE PHOTOCHEMICAL REACTION IN PHOTOSYNTHESIS.光合作用中的光化学反应。
J Gen Physiol. 1932 Nov 20;16(2):191-205. doi: 10.1085/jgp.16.2.191.
10
The assembly and organisation of photosynthetic membranes in Rhodobacter sphaeroides.球形红杆菌光合膜的组装与组织
Photochem Photobiol Sci. 2005 Dec;4(12):1023-7. doi: 10.1039/b506099k. Epub 2005 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验