Suppr超能文献

优化小型遗传网络中的信息流。

Optimizing information flow in small genetic networks.

作者信息

Tkacik Gasper, Walczak Aleksandra M, Bialek William

机构信息

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 1):031920. doi: 10.1103/PhysRevE.80.031920. Epub 2009 Sep 29.

Abstract

In order to survive, reproduce, and (in multicellular organisms) differentiate, cells must control the concentrations of the myriad different proteins that are encoded in the genome. The precision of this control is limited by the inevitable randomness of individual molecular events. Here we explore how cells can maximize their control power in the presence of these physical limits; formally, we solve the theoretical problem of maximizing the information transferred from inputs to outputs when the number of available molecules is held fixed. We start with the simplest version of the problem, in which a single transcription factor protein controls the readout of one or more genes by binding to DNA. We further simplify by assuming that this regulatory network operates in steady state, that the noise is small relative to the available dynamic range, and that the target genes do not interact. Even in this simple limit, we find a surprisingly rich set of optimal solutions. Importantly, for each locally optimal regulatory network, all parameters are determined once the physical constraints on the number of available molecules are specified. Although we are solving an oversimplified version of the problem facing real cells, we see parallels between the structure of these optimal solutions and the behavior of actual genetic regulatory networks. Subsequent papers will discuss more complete versions of the problem.

摘要

为了生存、繁殖以及(在多细胞生物中)分化,细胞必须控制基因组中编码的无数种不同蛋白质的浓度。这种控制的精确性受到单个分子事件不可避免的随机性的限制。在这里,我们探讨细胞如何在存在这些物理限制的情况下最大化其控制能力;形式上,我们解决了在可用分子数量固定时最大化从输入到输出传递的信息的理论问题。我们从该问题的最简单版本开始,即单个转录因子蛋白通过与DNA结合来控制一个或多个基因的读出。我们通过假设这个调控网络在稳态下运行、相对于可用动态范围噪声较小以及目标基因不相互作用来进一步简化。即使在这个简单的限制条件下,我们也发现了一组惊人丰富的最优解。重要的是,对于每个局部最优调控网络,一旦指定了对可用分子数量的物理限制,所有参数就都确定了。尽管我们正在解决一个比实际细胞面临的问题过度简化的版本,但我们看到这些最优解的结构与实际遗传调控网络的行为之间存在相似之处。后续论文将讨论该问题更完整的版本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bff/2928077/87b5ec854e01/nihms228491f1.jpg

相似文献

1
Optimizing information flow in small genetic networks.优化小型遗传网络中的信息流。
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 1):031920. doi: 10.1103/PhysRevE.80.031920. Epub 2009 Sep 29.
2
Optimizing information flow in small genetic networks. III. A self-interacting gene.优化小型遗传网络中的信息流。III. 一个自相互作用基因。
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Apr;85(4 Pt 1):041903. doi: 10.1103/PhysRevE.85.041903. Epub 2012 Apr 5.
3
Deriving a genetic regulatory network from an optimization principle.从优化原理推导遗传调控网络。
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2402925121. doi: 10.1073/pnas.2402925121. Epub 2025 Jan 3.
5
Information transmission in genetic regulatory networks: a review.遗传调控网络中的信息传递:综述。
J Phys Condens Matter. 2011 Apr 20;23(15):153102. doi: 10.1088/0953-8984/23/15/153102. Epub 2011 Apr 1.
7
Information flow and optimization in transcriptional regulation.转录调控中的信息流与优化
Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12265-70. doi: 10.1073/pnas.0806077105. Epub 2008 Aug 21.
8
Controlling gene expression timing through gene regulatory architecture.通过基因调控结构控制基因表达的时间。
PLoS Comput Biol. 2022 Jan 18;18(1):e1009745. doi: 10.1371/journal.pcbi.1009745. eCollection 2022 Jan.
9
Optimizing information flow in small genetic networks. II. Feed-forward interactions.优化小型遗传网络中的信息流。II. 前馈相互作用。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 1):041905. doi: 10.1103/PhysRevE.81.041905. Epub 2010 Apr 6.
10
The population genetics of cooperative gene regulation.合作基因调控的群体遗传学。
BMC Evol Biol. 2012 Sep 6;12:173. doi: 10.1186/1471-2148-12-173.

引用本文的文献

2
Deriving a genetic regulatory network from an optimization principle.从优化原理推导遗传调控网络。
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2402925121. doi: 10.1073/pnas.2402925121. Epub 2025 Jan 3.
3
Finding the last bits of positional information.寻找最后的位置信息片段。
PRX Life. 2024 Jan-Mar;2(1). doi: 10.1103/prxlife.2.013016. Epub 2024 Mar 26.
8
Trading bits in the readout from a genetic network.从遗传网络的读出中交易位。
Proc Natl Acad Sci U S A. 2021 Nov 16;118(46). doi: 10.1073/pnas.2109011118.
10
Mapping the dynamic transfer functions of eukaryotic gene regulation.绘制真核基因调控的动态传递函数
Cell Syst. 2021 Nov 17;12(11):1079-1093.e6. doi: 10.1016/j.cels.2021.08.003. Epub 2021 Aug 31.

本文引用的文献

1
Mutual information between input and output trajectories of biochemical networks.生化网络输入与输出轨迹之间的互信息。
Phys Rev Lett. 2009 May 29;102(21):218101. doi: 10.1103/PhysRevLett.102.218101. Epub 2009 May 27.
2
Diffusion, dimensionality, and noise in transcriptional regulation.转录调控中的扩散、维度与噪声
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 May;79(5 Pt 1):051901. doi: 10.1103/PhysRevE.79.051901. Epub 2009 May 4.
4
Information capacity of genetic regulatory elements.遗传调控元件的信息容量。
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jul;78(1 Pt 1):011910. doi: 10.1103/PhysRevE.78.011910. Epub 2008 Jul 21.
5
Information flow and optimization in transcriptional regulation.转录调控中的信息流与优化
Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12265-70. doi: 10.1073/pnas.0806077105. Epub 2008 Aug 21.
6
The role of input noise in transcriptional regulation.输入噪声在转录调控中的作用。
PLoS One. 2008 Jul 23;3(7):e2774. doi: 10.1371/journal.pone.0002774.
7
Cooperativity, sensitivity, and noise in biochemical signaling.生化信号传导中的协同性、敏感性和噪声
Phys Rev Lett. 2008 Jun 27;100(25):258101. doi: 10.1103/PhysRevLett.100.258101. Epub 2008 Jun 23.
9
Optimizing the readout of morphogen gradients.优化形态发生素梯度的读出
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Apr;77(4 Pt 1):041903. doi: 10.1103/PhysRevE.77.041903. Epub 2008 Apr 8.
10
Chromatin decouples promoter threshold from dynamic range.染色质将启动子阈值与动态范围解耦。
Nature. 2008 May 8;453(7192):246-50. doi: 10.1038/nature06867. Epub 2008 Apr 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验