Nimon Kim, Lewis Mitzi, Kane Richard, Haynes R Michael
Southern Methodist University, Dallas, Texas, USA.
Behav Res Methods. 2008 May;40(2):457-66. doi: 10.3758/brm.40.2.457.
Multiple regression is a widely used technique for data analysis in social and behavioral research. The complexity of interpreting such results increases when correlated predictor variables are involved. Commonality analysis provides a method of determining the variance accounted for by respective predictor variables and is especially useful in the presence of correlated predictors. However, computing commonality coefficients is laborious. To make commonality analysis accessible to more researchers, a program was developed to automate the calculation of unique and common elements in commonality analysis, using the statistical package R. The program is described, and a heuristic example using data from the Holzinger and Swineford (1939) study, readily available in the MBESS R package, is presented.
多元回归是社会和行为研究中广泛使用的数据分析技术。当涉及相关预测变量时,解释此类结果的复杂性会增加。共性分析提供了一种确定各个预测变量所解释方差的方法,在存在相关预测变量的情况下特别有用。然而,计算共性系数很费力。为了让更多研究人员能够进行共性分析,我们开发了一个程序,使用统计软件包R自动计算共性分析中的独特元素和共同元素。本文描述了该程序,并给出了一个使用霍尔津格和斯温福德(1939年)研究数据的启发式示例,该数据可在MBESS R软件包中轻松获取。