Süel Katherine E, Gu Hongmei, Chook Yuh Min
Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America.
PLoS Biol. 2008 Jun 3;6(6):e137. doi: 10.1371/journal.pbio.0060137.
Proline-tyrosine nuclear localization signals (PY-NLSs) are recognized and transported into the nucleus by human Karyopherin (Kap) beta2/Transportin and yeast Kap104p. Multipartite PY-NLSs are highly diverse in sequence and structure, share a common C-terminal R/H/KX2-5PY motif, and can be subdivided into hydrophobic and basic subclasses based on loose N-terminal sequence motifs. PY-NLS variability is consistent with weak consensus motifs, but such diversity potentially renders comprehensive genome-scale searches intractable. Here, we use yeast Kap104p as a model system to understand the energetic organization of this NLS. First, we show that Kap104p substrates contain PY-NLSs, demonstrating their generality across eukaryotes. Previously reported Kapbeta2-NLS structures explain Kap104p specificity for the basic PY-NLS. More importantly, thermodynamic analyses revealed physical properties that govern PY-NLS binding affinity: (1) PY-NLSs contain three energetically significant linear epitopes, (2) each epitope accommodates substantial sequence diversity, within defined limits, (3) the epitopes are energetically quasi-independent, and (4) a given linear epitope can contribute differently to total binding energy in different PY-NLSs, amplifying signal diversity through combinatorial mixing of energetically weak and strong motifs. The modular organization of the PY-NLS coupled with its combinatorial energetics lays a path to decode this diverse and evolvable signal for future comprehensive genome-scale identification of nuclear import substrates.
脯氨酸 - 酪氨酸核定位信号(PY-NLSs)可被人类核转运蛋白β2/运输蛋白(Karyopherin (Kap) beta2/Transportin)和酵母Kap104p识别并转运至细胞核。多部分PY-NLSs在序列和结构上高度多样,共享一个共同的C末端R/H/KX2 - 5PY基序,并可根据松散的N末端序列基序细分为疏水和碱性亚类。PY-NLS的变异性与弱共有基序一致,但这种多样性可能使全面的基因组规模搜索变得棘手。在这里,我们使用酵母Kap104p作为模型系统来理解这种核定位信号的能量组织。首先,我们表明Kap104p的底物含有PY-NLSs,证明了它们在真核生物中的普遍性。先前报道的Kapβ2-NLS结构解释了Kap104p对碱性PY-NLS的特异性。更重要的是,热力学分析揭示了决定PY-NLS结合亲和力的物理性质:(1)PY-NLSs包含三个具有能量意义的线性表位,(2)每个表位在定义的范围内容纳大量的序列多样性,(3)这些表位在能量上近似独立,并且(4)给定的线性表位在不同的PY-NLSs中对总结合能的贡献可能不同,通过能量上强弱基序的组合混合放大信号多样性。PY-NLS的模块化组织及其组合能量学为未来全面的基因组规模识别核输入底物解码这种多样且可进化的信号铺平了道路。