Frankel Brenda A, Blanchard John S
Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
Arch Biochem Biophys. 2008 Sep 15;477(2):259-66. doi: 10.1016/j.abb.2008.05.013. Epub 2008 May 25.
Mycobactin acylation plays a crucial role in the ability of Mycobacterium tuberculosis to acquire intracellular iron during infection. M. tuberculosis Rv1347c, the lysine N(epsilon)-acyltransferase responsible for mycobactin acylation, represents a valid target for the development of novel anti-tubercular agents. Here we investigate the substrate specificity of Rv1347c, evaluate its kinetic mechanism and probe the contributions of active-site residues to catalysis. Our results confirm that Rv1347c demonstrates a preference for longer acyl-chains and suggest that mycobactin acylation occurs subsequent to mycobactin core assembly. Steady-state bisubstrate kinetics and dead-end inhibitor studies support a random sequential kinetic mechanism. Analysis of the pH dependence of k(cat)/K(m) revealed the presence of two groups that must be deprotonated for efficient catalysis. Mutagenesis of His(130) and Asp(168) indicated that both residues are critical for acyltransferase activity and suggests that His(130) is responsible for general base activation of the epsilon-amino group of lysine.
分枝杆菌素酰化在结核分枝杆菌感染期间获取细胞内铁的能力中起着关键作用。结核分枝杆菌Rv1347c是负责分枝杆菌素酰化的赖氨酸N(ε)-酰基转移酶,是开发新型抗结核药物的有效靶点。在此,我们研究了Rv1347c的底物特异性,评估了其动力学机制,并探究了活性位点残基对催化作用的贡献。我们的结果证实,Rv1347c对较长的酰基链表现出偏好,并表明分枝杆菌素酰化发生在分枝杆菌素核心组装之后。稳态双底物动力学和终产物抑制剂研究支持随机顺序动力学机制。对k(cat)/K(m)的pH依赖性分析表明,存在两组必须去质子化才能有效催化的基团。His(130)和Asp(168)的诱变表明,这两个残基对酰基转移酶活性都至关重要,并表明His(130)负责赖氨酸ε-氨基的一般碱激活。