Eisenbeis Simone, Lohmiller Stefanie, Valdebenito Marianne, Leicht Stefan, Braun Volkmar
Microbiology/Membrane Physiology, Proteome Center, University of Tübingen, Tübingen, Germany.
J Bacteriol. 2008 Aug;190(15):5230-8. doi: 10.1128/JB.00194-08. Epub 2008 Jun 6.
Among the 67 predicted TonB-dependent outer membrane transporters of Caulobacter crescentus, NagA was found to be essential for growth on N-acetyl-beta-D-glucosamine (GlcNAc) and larger chitin oligosaccharides. NagA (93 kDa) has a predicted typical domain structure of an outer membrane transport protein: a signal sequence, the TonB box EQVVIT, a hatch domain of 147 residues, and a beta-barrel composed of 22 antiparallel beta-strands linked by large surface loops and very short periplasmic turns. Mutations in tonB1 and exbBD, known to be required for maltose transport via MalA in C. crescentus, and in two additional predicted tonB genes (open reading frames cc2327 and cc3508) did not affect NagA-mediated GlcNAc uptake. nagA is located in a gene cluster that encodes a predicted PTS sugar transport system and two enzymes that convert GlcNAc-6-P to fructose-6-P. Since a nagA insertion mutant did not grow on and transport GlcNAc, diffusion of GlcNAc through unspecific porins in the outer membrane is excluded. Uptake of GlcNAc into tonB and exbBD mutants and reduction but not abolishment of GlcNAc transport by agents which dissipate the electrochemical potential of the cytoplasmic membrane (0.1 mM carbonyl cyanide 3-chlorophenylhydrazone and 1 mM 2,4-dinitrophenol) suggest diffusion of GlcNAc through a permanently open pore of NagA. Growth on (GlcNAc)(3) and (GlcNAc)(5) requires ExbB and ExbD, indicating energy-coupled transport by NagA. We propose that NagA forms a small pore through which GlcNAc specifically diffuses into the periplasm and functions as an energy-coupled transporter for the larger chitin oligosaccharides.
在新月柄杆菌预测的67种依赖TonB的外膜转运蛋白中,发现NagA对于在N - 乙酰 - β - D - 葡萄糖胺(GlcNAc)和更大的几丁质寡糖上生长至关重要。NagA(93 kDa)具有外膜转运蛋白预测的典型结构域结构:信号序列、TonB框EQVVIT、147个残基的舱口结构域以及由22条反平行β链组成的β桶,这些β链由大的表面环和非常短的周质转角连接。已知在新月柄杆菌中通过MalA进行麦芽糖转运所需的tonB1和exbBD以及另外两个预测的tonB基因(开放阅读框cc2327和cc3508)中的突变并不影响NagA介导的GlcNAc摄取。nagA位于一个基因簇中,该基因簇编码一个预测的磷酸转移酶系统糖类转运系统以及两种将GlcNAc - 6 - P转化为果糖 - 6 - P的酶。由于nagA插入突变体不能在GlcNAc上生长且不能转运GlcNAc,因此排除了GlcNAc通过外膜中非特异性孔蛋白的扩散。GlcNAc进入tonB和exbBD突变体以及通过消耗细胞质膜电化学势的试剂(0.1 mM羰基氰化物3 - 氯苯腙和1 mM 2,4 - 二硝基苯酚)使GlcNAc转运减少但未消除,这表明GlcNAc通过NagA的永久开放孔扩散。在(GlcNAc)3和(GlcNAc)5上生长需要ExbB和ExbD,表明NagA进行能量偶联转运。我们提出NagA形成一个小孔,GlcNAc通过该孔特异性扩散到周质中,并作为更大几丁质寡糖的能量偶联转运体发挥作用。