Suppr超能文献

用于估计前列腺组织光谱电化学阻抗谱参数的遗传算法和最小二乘法算法

Genetic and least squares algorithms for estimating spectral EIS parameters of prostatic tissues.

作者信息

Halter Ryan J, Hartov Alex, Paulsen Keith D, Schned Alan, Heaney John

机构信息

Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.

出版信息

Physiol Meas. 2008 Jun;29(6):S111-23. doi: 10.1088/0967-3334/29/6/S10. Epub 2008 Jun 10.

Abstract

We employed electrical impedance spectroscopy (EIS) to evaluate the electrical properties of prostatic tissues. We collected freshly excised prostates from 23 men immediately following radical prostatectomy. The prostates were sectioned into 3 mm slices and electrical property measurements of complex resistivity were recorded from each of the slices using an impedance probe over the frequency range of 100 Hz to 100 kHz. The area probed was marked so that following tissue fixation and slide preparation, histological assessment could be correlated directly with the recorded EIS spectra. Prostate cancer (CaP), benign prostatic hyperplasia (BPH), non-hyperplastic glandular tissue and stroma were the primary prostatic tissue types probed. Genetic and least squares parameter estimation algorithms were implemented for fitting a Cole-type resistivity model to the measured data. The four multi-frequency-based spectral parameters defining the recorded spectrum (rho(infinity), Deltarho, f(c) and alpha) were determined using these algorithms and statistically analyzed with respect to the tissue type. Both algorithms fit the measured data well, with the least squares algorithm having a better average goodness of fit (95.2 mOmega m versus 109.8 mOmega m) and a faster execution time (80.9 ms versus 13 637 ms) than the genetic algorithm. The mean parameters, from all tissue samples, estimated using the genetic algorithm ranged from 4.44 to 5.55 Omega m, 2.42 to 7.14 Omega m, 3.26 to 6.07 kHz and 0.565 to 0.654 for rho(infinity), Deltarho, f(c) and alpha, respectively. These same parameters estimated using the least squares algorithm ranged from 4.58 to 5.79 Omega m, 2.18 to 6.98 Omega m, 2.97 to 5.06 kHz and 0.621 to 0.742 for rho(infinity), Deltarho, f(c) and alpha, respectively. The ranges of these parameters were similar to those reported in the literature. Further, significant differences (p < 0.01) were observed between CaP and BPH for the spectral parameters Deltarho and f(c); this is especially important since current prostate cancer screening methods do not reliably differentiate between these two tissue types.

摘要

我们采用电阻抗光谱法(EIS)来评估前列腺组织的电学特性。我们在根治性前列腺切除术后立即从23名男性患者身上收集了新鲜切除的前列腺。将前列腺切成3毫米厚的切片,并使用阻抗探头在100赫兹至100千赫兹的频率范围内记录每个切片的复电阻率电学特性测量值。对探测区域进行标记,以便在组织固定和玻片制备后,组织学评估能够直接与记录的EIS光谱相关联。前列腺癌(CaP)、良性前列腺增生(BPH)、非增生性腺组织和基质是所探测的主要前列腺组织类型。实施了遗传算法和最小二乘参数估计算法,以便将科尔型电阻率模型拟合到测量数据。使用这些算法确定定义记录光谱的四个基于多频率的光谱参数(ρ(∞)、Δρ、fc和α),并针对组织类型进行统计分析。两种算法都能很好地拟合测量数据,与遗传算法相比,最小二乘算法具有更好的平均拟合优度(95.2毫欧米·米对109.8毫欧米·米)和更快的执行时间(80.9毫秒对13637毫秒)。使用遗传算法从所有组织样本估计的平均参数,对于ρ(∞)、Δρ、fc和α分别为4.44至5.55欧米·米、2.42至7.14欧米·米、3.26至6.07千赫兹和0.565至0.654。使用最小二乘算法估计的这些相同参数,对于ρ(∞)、Δρ、fc和α分别为4.58至5.79欧米·米、2.18至6.98欧米·米、2.97至5.06千赫兹和0.621至0.742。这些参数的范围与文献中报道的范围相似。此外,在光谱参数Δρ和fc方面,CaP和BPH之间观察到显著差异(p < 0.01);鉴于当前的前列腺癌筛查方法无法可靠地区分这两种组织类型,这一点尤为重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验