Zhang Fu, Teng Zhaosheng, Yang Yuxiang, Zhong Haowen, Li Jianmin, Rutkove Seward B, Sanchez Benjamin
College of Engineering and Design, Hunan Normal University, Changsha, 410081, China.
Department of Electronic Science and Technology, Hunan University, Changsha, 410082, China.
Circuits Syst Signal Process. 2021 Feb;40(2):543-558. doi: 10.1007/s00034-020-01512-9. Epub 2020 Aug 13.
The Cole model is a widely used fractional circuit model in electrical bioimpedance applications for evaluating the content and status of biological tissues and fluids. Existing methods for estimating the Cole impedance parameters are often based on -frequency data obtained from stepped-sine measurements fitted using a complex non-linear least square (CNLS) algorithm. Newly emerged numerical methods from the magnitude of electrical bio-impedance data-only do not need CNLS fitting, but they still require -frequency stepped-sine data. This study proposes a novel approach to estimating the Cole impedance parameters that combines a numerical and time-domain fitting method based on a -frequency DC-biased sinusoidal current excitation.
First, the transient and steady-state voltage response along with the current excitation are acquired in electrical bio-impedance measurement. From the sampled data, a numerical method is applied to provide the initial estimation of the Cole impedance parameters, which are then used in a time-domain iterative fitting algorithm.
The accuracy of the algorithm proposed is tested with noisy electrical bio-impedance simulations. The maximum relative error of the estimated Cole impedance parameters is 1% considering 2% (34 dB) additive Gaussian noise. Experimental measurements performed on a 2R-1C circuit and some fruit samples show a mean difference less than 1% and 5% respectively compared to the Cole impedance parameters estimated from a commercial electrical bio-impedance analyzer performing stepped-sine measurements and CNLS fitting.
This is the first method that allows estimating the Cole impedance parameters from -frequency electrical bio-impedance data. The approach presented could find broad use in many applications, including -frequency body impedance analysis.
科尔模型是一种广泛应用于生物电阻抗的分数阶电路模型,用于评估生物组织和液体的成分及状态。现有的估计科尔阻抗参数的方法通常基于使用复非线性最小二乘(CNLS)算法对阶梯正弦测量获得的多频数据进行拟合。新出现的仅从生物电阻抗数据幅值出发的数值方法不需要CNLS拟合,但仍需要多频阶梯正弦数据。本研究提出了一种估计科尔阻抗参数的新方法,该方法结合了基于多频直流偏置正弦电流激励的数值和时域拟合方法。
首先,在生物电阻抗测量中采集瞬态和稳态电压响应以及电流激励。从采样数据中,应用一种数值方法提供科尔阻抗参数的初始估计,然后将其用于时域迭代拟合算法。
利用有噪声的生物电阻抗模拟测试了所提出算法的准确性。在考虑2%(34 dB)加性高斯噪声的情况下,估计的科尔阻抗参数的最大相对误差为1%。在2R-1C电路和一些水果样品上进行的实验测量表明,与通过执行阶梯正弦测量和CNLS拟合的商用生物电阻抗分析仪估计的科尔阻抗参数相比,平均差异分别小于1%和5%。
这是第一种允许从多频生物电阻抗数据估计科尔阻抗参数的方法。所提出的方法可能在许多应用中得到广泛应用,包括多频人体阻抗分析。