Suppr超能文献

集成多模态显微镜、时间分辨荧光和光镊流变学:迈向单分子力学生物学

Integrated multimodal microscopy, time-resolved fluorescence, and optical-trap rheometry: toward single molecule mechanobiology.

作者信息

Gullapalli Ramachandra R, Tabouillot Tristan, Mathura Rishi, Dangaria Jhanvi H, Butler Peter J

机构信息

The Pennsylvania State University, Department of Bioengineering, 205 Hallowell Building, University Park, Pennsylvania 16802, USA.

出版信息

J Biomed Opt. 2007 Jan-Feb;12(1):014012. doi: 10.1117/1.2673245.

Abstract

Cells respond to forces through coordinated biochemical signaling cascades that originate from changes in single-molecule structure and dynamics and proceed to large-scale changes in cellular morphology and protein expression. To enable experiments that determine the molecular basis of mechanotransduction over these large time and length scales, we construct a confocal molecular dynamics microscope (CMDM). This system integrates total-internal-reflection fluorescence (TIRF), epifluorescence, differential interference contrast (DIC), and 3-D deconvolution imaging modalities with time-correlated single-photon counting (TCSPC) instrumentation and an optical trap. Some of the structures hypothesized to be involved in mechanotransduction are the glycocalyx, plasma membrane, actin cytoskeleton, focal adhesions, and cell-cell junctions. Through analysis of fluorescence fluctuations, single-molecule spectroscopic measurements [e.g., fluorescence correlation spectroscopy (FCS) and time-resolved fluorescence] can be correlated with these subcellular structures in adherent endothelial cells subjected to well-defined forces. We describe the construction of our multimodal microscope in detail and the calibrations necessary to define molecular dynamics in cell and model membranes. Finally, we discuss the potential applications of the system and its implications for the field of mechanotransduction.

摘要

细胞通过协调的生化信号级联反应对力作出响应,这些信号级联反应源于单分子结构和动力学的变化,并进而导致细胞形态和蛋白质表达的大规模变化。为了开展能在这些较大的时间和长度尺度上确定机械转导分子基础的实验,我们构建了一台共聚焦分子动力学显微镜(CMDM)。该系统将全内反射荧光(TIRF)、落射荧光、微分干涉对比(DIC)和三维去卷积成像模式与时间相关单光子计数(TCSPC)仪器以及一个光镊整合在一起。一些据推测参与机械转导的结构包括糖萼、质膜、肌动蛋白细胞骨架、粘着斑和细胞间连接。通过对荧光涨落的分析,单分子光谱测量[例如,荧光相关光谱(FCS)和时间分辨荧光]可以与受到明确界定力作用的贴壁内皮细胞中的这些亚细胞结构相关联。我们详细描述了我们的多模态显微镜的构建以及在细胞和模型膜中定义分子动力学所需的校准。最后,我们讨论了该系统的潜在应用及其对机械转导领域的意义。

相似文献

2
Integrated microscopy for real-time imaging of mechanotransduction studies in live cells.
J Biomed Opt. 2009 May-Jun;14(3):034024. doi: 10.1117/1.3155517.
3
Applying combined optical tweezers and fluorescence microscopy technologies to manipulate cell adhesions for cell-to-cell interaction study.
IEEE Trans Biomed Eng. 2013 Aug;60(8):2308-15. doi: 10.1109/TBME.2013.2255287. Epub 2013 Mar 28.
4
High throughput particle analysis: combining dielectrophoretic particle focussing with confocal optical detection.
Biosens Bioelectron. 2006 Feb 15;21(8):1621-30. doi: 10.1016/j.bios.2005.10.017. Epub 2005 Dec 5.
6
Microfabricated platform for studying stem cell fates.
Biotechnol Bioeng. 2004 Nov 5;88(3):399-415. doi: 10.1002/bit.20254.
7
Fluorescence correlation spectroscopy: a review of biochemical and microfluidic applications.
Appl Spectrosc. 2011 Apr;65(4):115A-124A. doi: 10.1366/10-06224.
9
Multimodal optical microscope for detecting viability of mouse embryos in vitro.
J Biomed Opt. 2007 Jul-Aug;12(4):044006. doi: 10.1117/1.2753744.
10
Quantitative analysis of protein translocations by microfluidic total internal reflection fluorescence flow cytometry.
Lab Chip. 2010 Oct 21;10(20):2673-9. doi: 10.1039/c0lc00131g. Epub 2010 Aug 27.

引用本文的文献

1
Assessing hypoxic damage to placental trophoblasts by measuring membrane viscosity of extracellular vesicles.
Placenta. 2022 Apr;121:14-22. doi: 10.1016/j.placenta.2022.02.019. Epub 2022 Feb 24.
2
3
VIEW-MOD: a versatile illumination engine with a modular optical design for fluorescence microscopy.
Opt Express. 2019 Jul 8;27(14):19950-19972. doi: 10.1364/OE.27.019950.
4
β-Integrin-Mediated Adhesion Is Lipid-Bilayer Dependent.
Biophys J. 2017 Sep 5;113(5):1080-1092. doi: 10.1016/j.bpj.2017.07.010.
5
Highly permeable artificial water channels that can self-assemble into two-dimensional arrays.
Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):9810-5. doi: 10.1073/pnas.1508575112. Epub 2015 Jul 27.
6
Impulsive Enzymes: A New Force in Mechanobiology.
Cell Mol Bioeng. 2015 Mar 1;8(1):106-118. doi: 10.1007/s12195-014-0376-1.
7
The role of substrate topography on the cellular uptake of nanoparticles.
J Biomed Mater Res B Appl Biomater. 2016 Apr;104(3):488-95. doi: 10.1002/jbm.b.33397. Epub 2015 May 1.
8
Molecular cloning, overexpression and characterization of a novel water channel protein from Rhodobacter sphaeroides.
PLoS One. 2014 Jan 31;9(1):e86830. doi: 10.1371/journal.pone.0086830. eCollection 2014.
9
The mechanobiology of brain function.
Nat Rev Neurosci. 2012 Dec;13(12):867-78. doi: 10.1038/nrn3383.
10
Endothelial Cell Membrane Sensitivity to Shear Stress is Lipid Domain Dependent.
Cell Mol Bioeng. 2011 Jun 1;4(2):169-181. doi: 10.1007/s12195-010-0136-9.

本文引用的文献

2
Finite-element stress analysis of a multicomponent model of sheared and focally-adhered endothelial cells.
Ann Biomed Eng. 2007 Feb;35(2):208-23. doi: 10.1007/s10439-006-9223-4. Epub 2006 Dec 12.
3
Optical trapping.
Rev Sci Instrum. 2004 Sep;75(9):2787-809. doi: 10.1063/1.1785844.
4
High-resolution solid modeling of biological samples imaged with 3D fluorescence microscopy.
Microsc Res Tech. 2006 Aug;69(8):648-55. doi: 10.1002/jemt.20332.
5
Mechanotransduction and the glycocalyx.
J Intern Med. 2006 Apr;259(4):339-50. doi: 10.1111/j.1365-2796.2006.01620.x.
8
Mechanisms of mechanotransduction.
Dev Cell. 2006 Jan;10(1):11-20. doi: 10.1016/j.devcel.2005.12.006.
9
Toward understanding the dynamics of membrane-raft-based molecular interactions.
Biochim Biophys Acta. 2005 Dec 30;1746(3):234-51. doi: 10.1016/j.bbamcr.2005.10.001. Epub 2005 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验