Moradzadeh Arash, Borschel Gregory H, Luciano Janina P, Whitlock Elizabeth L, Hayashi Ayato, Hunter Daniel A, Mackinnon Susan E
Department of Otolaryngology-Head and Neck Surgery, Washington University, Saint Louis, Missouri 63110, USA.
Exp Neurol. 2008 Aug;212(2):370-6. doi: 10.1016/j.expneurol.2008.04.012. Epub 2008 Apr 23.
Sensory nerve autografting is the standard of care for injuries resulting in a nerve gap. Recent work demonstrates superior regeneration with motor nerve grafts. Improved regeneration with motor grafting may be a result of the nerve's Schwann cell basal lamina tube size. Motor nerves have larger SC basal lamina tubes, which may allow more nerve fibers to cross a nerve graft repair. Architecture may partially explain the suboptimal clinical results seen with sensory nerve grafting techniques. To define the role of nerve architecture, we evaluated regeneration through acellular motor and sensory nerve grafts. Thirty-six Lewis rats underwent tibial nerve repairs with 5 mm double-cable motor or triple-cable sensory nerve isografts. Grafts were harvested and acellularized in University of Wisconsin solution. Control animals received fresh motor or sensory cable isografts. Nerves were harvested after 4 weeks and histomorphometry was performed. In 6 animals per group from the fresh motor and sensory cable graft groups, weekly walking tracks and wet muscle mass ratios were performed at 7 weeks. Histomorphometry revealed more robust nerve regeneration in both acellular and cellular motor grafts. Sensory groups showed poor regeneration with significantly decreased percent nerve, fiber count, and density (p<0.05). Walking tracks revealed a trend toward improved functional recovery in the motor group. Gastrocnemius wet muscle mass ratios show a significantly greater muscle mass recovery in the motor group (p<0.05). Nerve architecture (size of SC basal lamina tubes) plays an important role in nerve regeneration in a mixed nerve gap model.
感觉神经自体移植是治疗导致神经缺损损伤的标准治疗方法。最近的研究表明,运动神经移植具有更好的再生效果。运动神经移植再生效果的改善可能是由于神经的施万细胞基膜管大小所致。运动神经的施万细胞基膜管更大,这可能使更多神经纤维穿过神经移植修复处。结构可能部分解释了感觉神经移植技术临床效果欠佳的原因。为了确定神经结构的作用,我们评估了通过脱细胞运动神经和感觉神经移植的再生情况。36只Lewis大鼠接受了用5毫米双股运动神经或三股感觉神经同种异体移植修复胫神经的手术。将移植物取出并在威斯康星大学溶液中脱细胞处理。对照动物接受新鲜的运动或感觉电缆状同种异体移植物。4周后取出神经并进行组织形态计量学分析。在新鲜运动和感觉电缆移植物组每组6只动物中,在7周时每周进行行走轨迹和湿肌肉质量比测量。组织形态计量学分析显示,脱细胞和细胞性运动移植物中的神经再生都更强。感觉神经组的再生情况较差,神经百分比、纤维计数和密度显著降低(p<0.05)。行走轨迹显示运动神经组功能恢复有改善趋势。腓肠肌湿肌肉质量比显示运动神经组的肌肉质量恢复明显更大(p<0.05)。在混合神经缺损模型中,神经结构(施万细胞基膜管大小)在神经再生中起重要作用。