Suppr超能文献

压力驱动条件下纳米毛细管中的色谱分离。

Chromatographic separations in a nanocapillary under pressure-driven conditions.

作者信息

Wang Xiayan, Kang Jianzheng, Wang Shili, Lu Joann J, Liu Shaorong

机构信息

Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.

出版信息

J Chromatogr A. 2008 Jul 25;1200(2):108-13. doi: 10.1016/j.chroma.2008.05.088. Epub 2008 Jun 3.

Abstract

We report a unique property of nanocapillaries for chromatographic separations of ionic species. Due to the electric double layer overlap, ions are unevenly distributed inside a nanochannel, with counterions enriched near the wall and co-ions concentrated in the middle of the channel. As a pressure-driven flow is induced, the co-ions will move faster than the counterions. This differential transport results in a chromatographic separation. In this work, we introduce the fundamental mechanism of this separation technology and demonstrate its application for DNA separations. An outstanding feature of this technique is that each separation consumes less than 1 pL sample and generates less than 0.1 nL waste. We also apply this technique for separations of DNA molecules, and efficiencies of more than 1,00000 plates per meter are obtained.

摘要

我们报道了纳米毛细管用于离子物种色谱分离的独特性质。由于双电层重叠,离子在纳米通道内分布不均,反离子富集在壁附近,同离子集中在通道中间。当诱导压力驱动流时,同离子将比反离子移动得更快。这种差异传输导致色谱分离。在这项工作中,我们介绍了这种分离技术的基本机制,并展示了其在DNA分离中的应用。该技术的一个突出特点是每次分离消耗的样品少于1皮升,产生的废物少于0.1纳升。我们还将该技术应用于DNA分子的分离,获得了每米超过100000理论塔板数的分离效率。

相似文献

1
Chromatographic separations in a nanocapillary under pressure-driven conditions.
J Chromatogr A. 2008 Jul 25;1200(2):108-13. doi: 10.1016/j.chroma.2008.05.088. Epub 2008 Jun 3.
3
Detecting DNA folding with nanocapillaries.
Nano Lett. 2010 Jul 14;10(7):2493-7. doi: 10.1021/nl100997s.
4
Ion separation in nanofluidics.
Electrophoresis. 2008 Sep;29(18):3737-43. doi: 10.1002/elps.200800098.
6
Separation of ions in nanofluidic channels with combined pressure-driven and electro-osmotic flow.
Anal Chem. 2013 Mar 5;85(5):2991-8. doi: 10.1021/ac400081p. Epub 2013 Feb 14.
7
DNA translocation through low-noise glass nanopores.
ACS Nano. 2013 Dec 23;7(12):11255-62. doi: 10.1021/nn405029j. Epub 2013 Nov 26.
9
On-chip hydrodynamic chromatography of DNA through centimeters-long glass nanocapillaries.
Analyst. 2017 Jun 21;142(12):2191-2198. doi: 10.1039/c7an00499k. Epub 2017 May 24.
10
Electrokinetic transport and separations in fluidic nanochannels.
Electrophoresis. 2007 Feb;28(4):595-610. doi: 10.1002/elps.200600612.

引用本文的文献

1
Extension of hydrodynamic chromatography to DNA fragment sizing and quantitation.
Heliyon. 2021 Sep 7;7(9):e07904. doi: 10.1016/j.heliyon.2021.e07904. eCollection 2021 Sep.
2
Beyond gel electrophoresis: microfluidic separations, fluorescence burst analysis, and DNA stretching.
Chem Rev. 2013 Apr 10;113(4):2584-667. doi: 10.1021/cr3002142. Epub 2012 Nov 12.
3
Separation and liquid chromatography using a single carbon nanotube.
Sci Rep. 2012;2:510. doi: 10.1038/srep00510. Epub 2012 Jul 13.
4
Principles and applications of nanofluidic transport.
Nat Nanotechnol. 2009 Nov;4(11):713-20. doi: 10.1038/nnano.2009.332.

本文引用的文献

1
Fabrication of self-sealed circular nano/microfluidic channels in glass substrates.
Nanotechnology. 2007 Apr 4;18(13):135304. doi: 10.1088/0957-4484/18/13/135304. Epub 2007 Feb 28.
2
Solute separation in nanofluidic channels: pressure-driven or electric field-driven?
Electrophoresis. 2007 Feb;28(4):627-34. doi: 10.1002/elps.200600454.
3
Bio-mimic multichannel microtubes by a facile method.
J Am Chem Soc. 2007 Jan 31;129(4):764-5. doi: 10.1021/ja068165g.
4
Pressure-driven transport of confined DNA polymers in fluidic channels.
Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15853-8. doi: 10.1073/pnas.0605900103. Epub 2006 Oct 17.
5
A robust cross-linked polyacrylamide coating for microchip electrophoresis of dsDNA fragments.
Electrophoresis. 2006 Oct;27(19):3764-71. doi: 10.1002/elps.200600201.
6
Analyte-stationary phase interactions in ion-exclusion chromatography.
J Chromatogr A. 2006 Jun 16;1118(1):19-28. doi: 10.1016/j.chroma.2006.02.090. Epub 2006 Mar 30.
7
Electrokinetic transport in nanochannels. 2. Experiments.
Anal Chem. 2005 Nov 1;77(21):6782-9. doi: 10.1021/ac0508346.
8
Electrokinetic transport in nanochannels. 1. Theory.
Anal Chem. 2005 Nov 1;77(21):6772-81. doi: 10.1021/ac050835y.
9
Electrokinetic molecular separation in nanoscale fluidic channels.
Lab Chip. 2005 Nov;5(11):1271-6. doi: 10.1039/b503914b. Epub 2005 Sep 12.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验