Studholme Colin
Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
Med Image Anal. 2008 Dec;12(6):742-51. doi: 10.1016/j.media.2008.03.010. Epub 2008 Apr 16.
Registration based mapping of geometric differences in MRI anatomy allows the detection of subtle and complex changes in brain anatomy over time that provides an important quantitative window on the process of both brain development and degeneration. However, methods developed for this have so far been aimed at using conventional structural MRI data (T1W imaging) and the resulting maps are limited in their ability to localize patterns of change within sub-regions of uniform tissue. Alternative MRI contrast mechanisms, in particular Diffusion Tensor Imaging (DTI) data are now more commonly being used in serial studies and provide valuable complementary microstructural information within white matter. This paper describes a new approach which incorporates information from DTI data into deformation tensor morphometry of conventional MRI. The key problem of using the additional information provided by DTI data is addressed by proposing a novel mutual information (MI) derived criterion termed diffusion paired MI. This combines conventional and diffusion data in a single registration measure. We compare different formulations of this measure when used in a diffeomorphic fluid registration scheme to map local volume changes. Results on synthetic data and example images from clinical studies of neurodegenerative conditions illustrate the improved localization of tissue volume changes provided by the incorporation of DTI data into the morphometric registration.
基于配准的MRI解剖结构几何差异映射能够检测大脑解剖结构随时间的细微和复杂变化,这为大脑发育和退化过程提供了一个重要的定量窗口。然而,迄今为止为此开发的方法旨在使用传统的结构MRI数据(T1加权成像),并且所得映射在定位均匀组织子区域内的变化模式方面能力有限。替代的MRI对比机制,特别是扩散张量成像(DTI)数据现在在系列研究中更常被使用,并在白质内提供有价值的补充微观结构信息。本文描述了一种新方法,该方法将DTI数据中的信息纳入传统MRI的变形张量形态测量中。通过提出一种称为扩散配对互信息(MI)的新型互信息(MI)衍生标准,解决了使用DTI数据提供的额外信息的关键问题。这在单一配准测量中结合了传统数据和扩散数据。我们在用于映射局部体积变化的微分同胚流体配准方案中使用此测量的不同公式进行比较。来自神经退行性疾病临床研究的合成数据和示例图像的结果说明了将DTI数据纳入形态测量配准所提供的组织体积变化定位的改善。