Suppr超能文献

胎儿生长的胎盘决定因素:利用人工神经网络识别胰岛素样生长因子和细胞因子系统中的关键因子。

Placental determinants of fetal growth: identification of key factors in the insulin-like growth factor and cytokine systems using artificial neural networks.

作者信息

Street Maria E, Grossi Enzo, Volta Cecilia, Faleschini Elena, Bernasconi Sergio

机构信息

Department of Pediatrics, University of Parma, 43100 Parma, Italy.

出版信息

BMC Pediatr. 2008 Jun 17;8:24. doi: 10.1186/1471-2431-8-24.

Abstract

BACKGROUND

Changes and relationships of components of the cytokine and IGF systems have been shown in placenta and cord serum of fetal growth restricted (FGR) compared with normal newborns (AGA). This study aimed to analyse a data set of clinical and biochemical data in FGR and AGA newborns to assess if a mathematical model existed and was capable of identifying these two different conditions in order to identify the variables which had a mathematically consistent biological relevance to fetal growth.

METHODS

Whole villous tissue was collected at birth from FGR (N = 20) and AGA neonates (N = 28). Total RNA was extracted, reverse transcribed and then real-time quantitative (TaqMan) RT-PCR was performed to quantify cDNA for IGF-I, IGF-II, IGFBP-1, IGFBP-2 and IL-6. The corresponding proteins with TNF-alpha in addition were assayed in placental lysates using specific kits. The data were analysed using Artificial Neural Networks (supervised networks), and principal component analysis and connectivity map.

RESULTS

The IGF system and IL-6 allowed to predict FGR in approximately 92% of the cases and AGA in 85% of the cases with a low number of errors. IGF-II, IGFBP-2, and IL-6 content in the placental lysates were the most important factors connected with FGR. The condition of being FGR was connected mainly with the IGF-II placental content, and the latter with IL-6 and IGFBP-2 concentrations in placental lysates.

CONCLUSION

These results suggest that further research in humans should focus on these biochemical data. Furthermore, this study offered a critical revision of previous studies. The understanding of this system biology is relevant to the development of future therapeutical interventions possibly aiming at reducing IL-6 and IGFBP-2 concentrations preserving IGF bioactivity in both placenta and fetus.

摘要

背景

与正常新生儿(适于胎龄儿,AGA)相比,胎儿生长受限(FGR)的胎盘和脐带血清中细胞因子和胰岛素样生长因子(IGF)系统各成分已显示出变化及相互关系。本研究旨在分析FGR和AGA新生儿的临床及生化数据集,以评估是否存在一种数学模型,该模型能否识别这两种不同情况,从而确定与胎儿生长具有数学上一致生物学相关性的变量。

方法

出生时从FGR新生儿(N = 20)和AGA新生儿(N = 28)采集全绒毛组织。提取总RNA,进行逆转录,然后进行实时定量(TaqMan)RT-PCR以定量IGF-I、IGF-II、IGFBP-1、IGFBP-2和IL-6的cDNA。另外,使用特定试剂盒在胎盘裂解物中检测相应蛋白质及肿瘤坏死因子-α(TNF-α)。使用人工神经网络(监督网络)、主成分分析和连通图对数据进行分析。

结果

IGF系统和IL-6能够在错误数量较少的情况下,大约92%的病例中预测FGR,85%的病例中预测AGA。胎盘裂解物中IGF-II、IGFBP-2和IL-6含量是与FGR相关的最重要因素。FGR状态主要与胎盘IGF-II含量相关,而后者又与胎盘裂解物中IL-6和IGFBP-2浓度相关。

结论

这些结果表明,人类的进一步研究应聚焦于这些生化数据。此外,本研究对先前的研究进行了批判性修订。对该系统生物学的理解与未来治疗干预措施的开发相关,这些干预措施可能旨在降低IL-6和IGFBP-2浓度,同时在胎盘和胎儿中保留IGF生物活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bad/2438355/17681e0bea62/1471-2431-8-24-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验