Suppr超能文献

基于生物标志物的个体化治疗的临床试验设计。

Clinical trial designs for testing biomarker-based personalized therapies.

机构信息

Department of Statistics, Stanford University, Stanford, CA 94305, USA.

出版信息

Clin Trials. 2012 Apr;9(2):141-54. doi: 10.1177/1740774512437252. Epub 2012 Mar 7.

Abstract

BACKGROUND

Advances in molecular therapeutics in the past decade have opened up new possibilities for treating cancer patients with personalized therapies, using biomarkers to determine which treatments are most likely to benefit them, but there are difficulties and unresolved issues in the development and validation of biomarker-based personalized therapies. We develop a new clinical trial design to address some of these issues. The goal is to capture the strengths of the frequentist and Bayesian approaches to address this problem in the recent literature and to circumvent their limitations.

METHODS

We use generalized likelihood ratio tests of the intersection null and enriched strategy null hypotheses to derive a novel clinical trial design for the problem of advancing promising biomarker-guided strategies toward eventual validation. We also investigate the usefulness of adaptive randomization (AR) and futility stopping proposed in the recent literature.

RESULTS

Simulation studies demonstrate the advantages of testing both the narrowly focused enriched strategy null hypothesis related to validating a proposed strategy and the intersection null hypothesis that can accommodate to a potentially successful strategy. AR and early termination of ineffective treatments offer increased probability of receiving the preferred treatment and better response rates for patients in the trial, at the expense of more complicated inference under small-to-moderate total sample sizes and some reduction in power.

LIMITATIONS

The binary response used in the development phase may not be a reliable indicator of treatment benefit on long-term clinical outcomes. In the proposed design, the biomarker-guided strategy (BGS) is not compared to 'standard of care', such as physician's choice that may be informed by patient characteristics. Therefore, a positive result does not imply superiority of the BGS to 'standard of care'. The proposed design and tests are valid asymptotically. Simulations are used to examine small-to-moderate sample properties.

CONCLUSION

Innovative clinical trial designs are needed to address the difficulties and issues in the development and validation of biomarker-based personalized therapies. The article shows the advantages of using likelihood inference and interim analysis to meet the challenges in the sample size needed and in the constantly evolving biomarker landscape and genomic and proteomic technologies.

摘要

背景

过去十年中,分子治疗学的进步为癌症患者提供了使用生物标志物来确定最有可能受益于哪些治疗方法的个性化治疗的新可能性,从而为癌症患者提供了新的可能性。但是,在开发和验证基于生物标志物的个性化治疗方面存在困难和未解决的问题。我们开发了一种新的临床试验设计来解决其中的一些问题。目标是利用基于似然比检验的方法,解决近期文献中提出的这个问题,并规避它们的局限性。

方法

我们使用广义似然比检验来检验交集零假设和富集策略零假设,从而为推进有前途的生物标志物指导策略以最终验证的问题设计一种新的临床试验设计。我们还研究了近期文献中提出的适应性随机化(AR)和无效性停止的有效性。

结果

模拟研究表明,检验验证拟议策略的窄焦点富集策略零假设和可以适应潜在成功策略的交集零假设都具有优势。AR 和早期终止无效治疗可以提高接受首选治疗的可能性,并提高试验中患者的反应率,但其代价是在小到中等总样本量下进行更复杂的推断,并且在一定程度上降低了功效。

局限性

开发阶段使用的二分类响应可能不是治疗长期临床结局的可靠指标。在拟议的设计中,生物标志物指导的策略(BGS)与“标准治疗”(如基于患者特征的医生选择)不进行比较。因此,阳性结果并不意味着 BGS 优于“标准治疗”。所提出的设计和检验在渐近意义上是有效的。模拟用于检验小到中等样本的性质。

结论

需要创新的临床试验设计来解决基于生物标志物的个性化治疗的开发和验证中的困难和问题。本文展示了使用似然比推断和中期分析来应对所需样本量的挑战以及生物标志物领域不断发展的挑战的优势,以及基因组和蛋白质组学技术。

相似文献

4
Bayesian basket trial design with false-discovery rate control.贝叶斯篮子试验设计与错误发现率控制。
Clin Trials. 2022 Jun;19(3):297-306. doi: 10.1177/17407745211073624. Epub 2022 Feb 7.
10
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

3
Adaptive Clinical Trials: Overview of Early-Phase Designs and Challenges.适应性临床试验:早期设计概述与挑战
Ther Innov Regul Sci. 2014 Jan;48(1):20-30. doi: 10.1177/2168479013513889. Epub 2013 Nov 26.
5
Clinical trial designs incorporating predictive biomarkers.纳入预测性生物标志物的临床试验设计。
Cancer Treat Rev. 2016 Feb;43:74-82. doi: 10.1016/j.ctrv.2015.12.008. Epub 2016 Jan 5.
6
Commentary on Hey and Kimmelman.关于海伊和金梅尔曼的评论
Clin Trials. 2015 Apr;12(2):110-2. doi: 10.1177/1740774514568875. Epub 2015 Feb 3.

本文引用的文献

1
The BATTLE trial: personalizing therapy for lung cancer.BATTLE 试验:为肺癌患者实施个体化治疗。
Cancer Discov. 2011 Jun;1(1):44-53. doi: 10.1158/2159-8274.CD-10-0010. Epub 2011 Jun 1.
2
Outcome--adaptive randomization: is it useful?结局适应性随机化:它有用吗?
J Clin Oncol. 2011 Feb 20;29(6):771-6. doi: 10.1200/JCO.2010.31.1423. Epub 2010 Dec 20.
3
Adaptive clinical trials: the promise and the caution.适应性临床试验:前景与警示。
J Clin Oncol. 2011 Feb 20;29(6):606-9. doi: 10.1200/JCO.2010.32.2685. Epub 2010 Dec 20.
7
Clinical drug tests adapted for speed.为加快速度而调整的临床药物试验。
Nature. 2010 Apr 29;464(7293):1258. doi: 10.1038/4641258a.
10
Randomized clinical trials with biomarkers: design issues.随机临床试验与生物标志物:设计问题。
J Natl Cancer Inst. 2010 Feb 3;102(3):152-60. doi: 10.1093/jnci/djp477. Epub 2010 Jan 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验