Suppr超能文献

传导速度恢复和短期记忆在离体兔心脏动作电位时程交替发生中的作用

Role of conduction velocity restitution and short-term memory in the development of action potential duration alternans in isolated rabbit hearts.

作者信息

Mironov Sergey, Jalife José, Tolkacheva Elena G

机构信息

Department of Pharmacology, Institute for Cardiovascular Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA.

出版信息

Circulation. 2008 Jul 1;118(1):17-25. doi: 10.1161/CIRCULATIONAHA.107.737254. Epub 2008 Jun 16.

Abstract

BACKGROUND

Spatially discordant alternans (SDA) has been linked to life-threatening arrhythmias. The mechanisms underlying SDA development in cardiac tissue remain unclear.

METHODS AND RESULTS

We investigated the role of conduction velocity (CV) restitution and short-term memory in the organization and evolution of alternans in action potential duration using high-resolution optical mapping of the epicardial surface in 8 isolated, Langendorff-perfused rabbit hearts. To assess the spatial organization of alternans, we tracked the evolution of nodal lines that separate out-of-phase regions of SDA. We measured the action potential duration heterogeneity index and maximal slope of CV restitution and estimated the effects of short-term memory by calculating time constant of action potential duration accommodation (tau). We found that 2 mechanisms underlie the development of SDA in the heart, leading to 2 distinct behaviors of nodal lines. The first mechanism is based on steep CV restitution and is associated with small tau and stable nodal lines. The second mechanism is associated with short-term memory (large tau) and is characterized by shallow CV restitution and unstable behavior of nodal lines. The maximum slope of the CV restitution was steeper (18.16+/-3.34 m/s(2)) and tau was smaller (tau=4.31+/-0.33 stimuli) for areas with stable nodal lines than for areas with unstable nodal lines (6.32+/-0.96 m/s(2) and tau=10.3+/-1.84 stimuli; P<0.01).

CONCLUSIONS

Our results provide new insight into the mechanisms underlying SDA formation in the rabbit heart. Specifically, our results suggest that a new mechanism associated with short-term memory underlies SDA formation in the heart, in addition to steep CV restitution.

摘要

背景

空间不协调交替(SDA)与危及生命的心律失常有关。心脏组织中SDA发生的机制仍不清楚。

方法与结果

我们使用8个离体的、Langendorff灌注的兔心脏的心外膜表面高分辨率光学标测技术,研究了动作电位时程中传导速度(CV)恢复和短期记忆在交替现象的组织和演变中的作用。为了评估交替现象的空间组织,我们追踪了分隔SDA不同相位区域的节点线的演变。我们测量了动作电位时程异质性指数和CV恢复的最大斜率,并通过计算动作电位时程适应的时间常数(tau)来估计短期记忆的影响。我们发现心脏中SDA的发生有两种机制,导致节点线出现两种不同的行为。第一种机制基于陡峭的CV恢复,与小的tau和稳定的节点线相关联。第二种机制与短期记忆(大的tau)相关联,其特征是CV恢复较浅且节点线行为不稳定。与具有不稳定节点线的区域相比,具有稳定节点线的区域的CV恢复最大斜率更陡峭(18.16±3.34 m/s²)且tau更小(tau = 4.31±0.33个刺激)(6.32±0.96 m/s²和tau = 10.3±1.84个刺激;P<0.01)。

结论

我们的结果为兔心脏中SDA形成的机制提供了新的见解。具体而言,我们的结果表明,除了陡峭的CV恢复外,一种与短期记忆相关的新机制是心脏中SDA形成的基础。

相似文献

2
The role of short term memory and conduction velocity restitution in alternans formation.
J Theor Biol. 2015 Feb 21;367:21-28. doi: 10.1016/j.jtbi.2014.11.014. Epub 2014 Nov 27.
3
Stability of spatially discordant repolarization alternans in cardiac tissue.
Chaos. 2020 Dec;30(12):123141. doi: 10.1063/5.0029209.
4
Hypothermia-induced spatially discordant action potential duration alternans and arrhythmogenesis in nonhibernating versus hibernating mammals.
Am J Physiol Heart Circ Physiol. 2012 Oct 15;303(8):H1035-46. doi: 10.1152/ajpheart.00786.2011. Epub 2012 Aug 10.
5
Spatially Discordant Repolarization Alternans in the Absence of Conduction Velocity Restitution.
Biophys J. 2020 May 19;118(10):2574-2587. doi: 10.1016/j.bpj.2020.02.008. Epub 2020 Feb 15.
6
Suppression of alternans and conduction blocks despite steep APD restitution: electrotonic, memory, and conduction velocity restitution effects.
Am J Physiol Heart Circ Physiol. 2004 Jun;286(6):H2332-41. doi: 10.1152/ajpheart.00747.2003. Epub 2004 Jan 29.
8
Origin of complex behaviour of spatially discordant alternans in a transgenic rabbit model of type 2 long QT syndrome.
J Physiol. 2009 Oct 1;587(Pt 19):4661-80. doi: 10.1113/jphysiol.2009.175018. Epub 2009 Aug 12.

引用本文的文献

2
Effect of electrochemical topology on detection sensitivity in MEA assay for drug-induced cardiotoxicity screening.
Biosens Bioelectron. 2025 Mar 15;272:117082. doi: 10.1016/j.bios.2024.117082. Epub 2024 Dec 25.
3
Extended voltage imaging in cardiomyocytes with a triplet state quencher-stabilized silicon rhodamine.
Bioorg Med Chem Lett. 2024 Sep 1;109:129842. doi: 10.1016/j.bmcl.2024.129842. Epub 2024 Jun 4.
5
Intracellular ion accumulation in the genesis of complex action potential dynamics under cardiac diseases.
Phys Rev E. 2024 Feb;109(2-1):024410. doi: 10.1103/PhysRevE.109.024410.
9
Cardiac Alternans: From Bedside to Bench and Back.
Circ Res. 2023 Jan 6;132(1):127-149. doi: 10.1161/CIRCRESAHA.122.321668. Epub 2023 Jan 5.
10
Guidelines for assessment of cardiac electrophysiology and arrhythmias in small animals.
Am J Physiol Heart Circ Physiol. 2022 Dec 1;323(6):H1137-H1166. doi: 10.1152/ajpheart.00439.2022. Epub 2022 Oct 21.

本文引用的文献

1
Application of blebbistatin as an excitation-contraction uncoupler for electrophysiologic study of rat and rabbit hearts.
Heart Rhythm. 2007 May;4(5):619-26. doi: 10.1016/j.hrthm.2006.12.047. Epub 2007 Jan 7.
2
Dynamic origin of spatially discordant alternans in cardiac tissue.
Biophys J. 2007 Jan 15;92(2):448-60. doi: 10.1529/biophysj.106.091009. Epub 2006 Oct 27.
3
Importance of spatiotemporal heterogeneity of cellular restitution in mechanism of arrhythmogenic discordant alternans.
Heart Rhythm. 2006 Jun;3(6):711-9. doi: 10.1016/j.hrthm.2006.02.1034. Epub 2006 Mar 10.
4
From pulsus to pulseless: the saga of cardiac alternans.
Circ Res. 2006 May 26;98(10):1244-53. doi: 10.1161/01.RES.0000224540.97431.f0.
5
Repolarization gradients in the canine left ventricle before and after induction of short-term cardiac memory.
Circulation. 2005 Sep 20;112(12):1711-8. doi: 10.1161/CIRCULATIONAHA.104.516583. Epub 2005 Sep 12.
6
The restitution portrait: a new method for investigating rate-dependent restitution.
J Cardiovasc Electrophysiol. 2004 Jun;15(6):698-709. doi: 10.1046/j.1540-8167.2004.03550.x.
7
The electrical restitution curve revisited: steep or flat slope--which is better?
J Cardiovasc Electrophysiol. 2003 Oct;14(10 Suppl):S140-7. doi: 10.1046/j.1540.8167.90303.x.
8
T-wave alternans for risk stratification and prevention of sudden cardiac death.
Curr Cardiol Rep. 2003 Sep;5(5):350-7. doi: 10.1007/s11886-003-0090-4.
9
Mechanism of discordant T wave alternans in the in vivo heart.
J Cardiovasc Electrophysiol. 2003 Jun;14(6):632-8. doi: 10.1046/j.1540-8167.2003.03028.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验