Suppr超能文献

低钾(K(+))时心脏组织超常传导中的交替折返及传导阻滞。

Alternans resonance and propagation block during supernormal conduction in cardiac tissue with decreased [K(+)](o).

机构信息

Department of Physiology, University of Bern, Bern, Switzerland.

出版信息

Biophys J. 2010 Apr 7;98(7):1129-38. doi: 10.1016/j.bpj.2009.12.4280.

Abstract

Cardiac restitution is an important factor in arrhythmogenesis. Steep positive action potential duration and conduction velocity (CV) restitution slopes promote alternans and reentrant arrhythmias. We examined the consequences of supernormal conduction (characterized by a negative CV restitution slope) on patterns of conduction and alternans in strands of Luo-Rudy model cells and in cultured cardiac cell strands. Interbeat intervals (IBIs) were analyzed as a function of distance during S1S2 protocols and during pacing at alternating cycle lengths. Supernormal conduction was induced by decreasing K(+). In control K(+) simulations, S1S2 intervals converged toward basic cycle length with a length constant determined by both CV and the CV restitution slope. During alternant pacing, the amplitude of IBI alternans converged with a shorter length constant, determined also by the action potential duration restitution slope. In contrast, during supernormal conduction, S1S2 intervals and the amplitude of alternans diverged. This amplification (resonance) led to phase-locked or more complex alternans patterns, and then to distal conduction block. The convergence/divergence of IBIs was verified in the cultured strands, in which naturally occurring tissue heterogeneities resulted in prominent discontinuities of the spatial IBI profiles. We conclude that supernormal conduction potentiates alternans and spatial analysis of IBIs represents a powerful method to locate tissue heterogeneities.

摘要

心脏复极是心律失常发生的一个重要因素。正性动作电位时程和传导速度(CV)复极斜率陡峭会促进折返性心律失常和交替性心律失常。我们研究了超常传导(表现为 CV 复极斜率为负)对洛鲁迪模型细胞和培养的心肌细胞束中传导和交替性的影响。在 S1S2 方案和交替周长起搏期间,通过分析心搏间期(IBI)与距离的关系来研究。通过降低 K(+)来诱导超常传导。在对照 K(+)模拟中,S1S2 间隔以基本周期长度为收敛,长度常数由 CV 和 CV 复极斜率共同决定。在交替起搏时,IBI 交替的幅度以更短的长度常数收敛,该常数也由动作电位时程复极斜率决定。相比之下,在超常传导时,S1S2 间隔和交替的幅度发散。这种放大(共振)导致锁相或更复杂的交替模式,然后导致远端传导阻滞。IBI 的收敛/发散在培养的细胞束中得到了验证,其中自然发生的组织异质性导致空间 IBI 曲线的明显不连续。我们得出结论,超常传导增强了交替性,IBI 的空间分析是定位组织异质性的一种有力方法。

相似文献

2
The transfer functions of cardiac tissue during stochastic pacing.
Biophys J. 2009 Jan;96(1):294-311. doi: 10.1016/j.bpj.2008.09.025.
3
The role of short term memory and conduction velocity restitution in alternans formation.
J Theor Biol. 2015 Feb 21;367:21-28. doi: 10.1016/j.jtbi.2014.11.014. Epub 2014 Nov 27.
4
Spatially discordant alternans in cardiomyocyte monolayers.
Am J Physiol Heart Circ Physiol. 2008 Mar;294(3):H1417-25. doi: 10.1152/ajpheart.01233.2007. Epub 2008 Jan 25.
5
A human ventricular cell model for investigation of cardiac arrhythmias under hyperkalaemic conditions.
Philos Trans A Math Phys Eng Sci. 2011 Nov 13;369(1954):4205-32. doi: 10.1098/rsta.2011.0127.
7
Action potential duration restitution and alternans in rabbit ventricular myocytes: the key role of intracellular calcium cycling.
Circ Res. 2005 Mar 4;96(4):459-66. doi: 10.1161/01.RES.0000156891.66893.83. Epub 2005 Jan 20.
9
Amplitude equation approach to spatiotemporal dynamics of cardiac alternans.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Nov;76(5 Pt 1):051911. doi: 10.1103/PhysRevE.76.051911. Epub 2007 Nov 12.
10
Cardiac electrical restitution properties and stability of reentrant spiral waves: a simulation study.
Am J Physiol. 1999 Jan;276(1):H269-83. doi: 10.1152/ajpheart.1999.276.1.H269.

引用本文的文献

1
Synchronization of spatially discordant voltage and calcium alternans in cardiac tissue.
Phys Rev E. 2022 Aug;106(2-1):024406. doi: 10.1103/PhysRevE.106.024406.
2
Stability of spatially discordant repolarization alternans in cardiac tissue.
Chaos. 2020 Dec;30(12):123141. doi: 10.1063/5.0029209.
3
Dynamics of spatiotemporal line defects and chaos control in complex excitable systems.
Sci Rep. 2017 Aug 10;7(1):7757. doi: 10.1038/s41598-017-08011-z.
5
Supernormal Conduction and Suppression of Spatially Discordant Alternans of Cardiac Action Potentials.
Front Physiol. 2016 Jan 6;6:407. doi: 10.3389/fphys.2015.00407. eCollection 2015.
6
Titanium dioxide nanoparticles promote arrhythmias via a direct interaction with rat cardiac tissue.
Part Fibre Toxicol. 2014 Dec 9;11:63. doi: 10.1186/s12989-014-0063-3.
7
Nonlinear and Stochastic Dynamics in the Heart.
Phys Rep. 2014 Oct 10;543(2):61-162. doi: 10.1016/j.physrep.2014.05.002.
10
Computational approaches to understand cardiac electrophysiology and arrhythmias.
Am J Physiol Heart Circ Physiol. 2012 Oct 1;303(7):H766-83. doi: 10.1152/ajpheart.01081.2011. Epub 2012 Aug 10.

本文引用的文献

1
Myofibroblasts in diseased hearts: new players in cardiac arrhythmias?
Heart Rhythm. 2009 Jun;6(6):848-56. doi: 10.1016/j.hrthm.2009.02.038. Epub 2009 Feb 25.
2
The transfer functions of cardiac tissue during stochastic pacing.
Biophys J. 2009 Jan;96(1):294-311. doi: 10.1016/j.bpj.2008.09.025.
3
Dynamic mechanism for initiation of ventricular fibrillation in vivo.
Circulation. 2008 Sep 9;118(11):1123-9. doi: 10.1161/CIRCULATIONAHA.107.738013. Epub 2008 Aug 25.
4
Electrotonic myofibroblast-to-myocyte coupling increases propensity to reentrant arrhythmias in two-dimensional cardiac monolayers.
Biophys J. 2008 Nov 1;95(9):4469-80. doi: 10.1529/biophysj.108.136473. Epub 2008 Jul 25.
5
Analysis of damped oscillations during reentry: a new approach to evaluate cardiac restitution.
Biophys J. 2008 Feb 1;94(3):1094-109. doi: 10.1529/biophysj.107.113811. Epub 2007 Oct 5.
6
Simulations of propagated mouse ventricular action potentials: effects of molecular heterogeneity.
Am J Physiol Heart Circ Physiol. 2007 Sep;293(3):H1816-32. doi: 10.1152/ajpheart.00471.2007. Epub 2007 Jun 22.
7
Theory of action potential wave block at-a-distance in the heart.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Feb;75(2 Pt 1):021910. doi: 10.1103/PhysRevE.75.021910. Epub 2007 Feb 20.
8
Dynamic changes of cardiac conduction during rapid pacing.
Am J Physiol Heart Circ Physiol. 2007 Apr;292(4):H1796-811. doi: 10.1152/ajpheart.00784.2006. Epub 2006 Dec 1.
9
From pulsus to pulseless: the saga of cardiac alternans.
Circ Res. 2006 May 26;98(10):1244-53. doi: 10.1161/01.RES.0000224540.97431.f0.
10
Vulnerable window for conduction block in a one-dimensional cable of cardiac cells, 1: single extrasystoles.
Biophys J. 2006 Aug 1;91(3):793-804. doi: 10.1529/biophysj.106.080945. Epub 2006 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验