Suppr超能文献

对酿酒酵母中高温诱导的糖酵解通量增加的定量分析揭示了主要的代谢调控。

Quantitative analysis of the high temperature-induced glycolytic flux increase in Saccharomyces cerevisiae reveals dominant metabolic regulation.

作者信息

Postmus Jarne, Canelas André B, Bouwman Jildau, Bakker Barbara M, van Gulik Walter, de Mattos M Joost Teixeira, Brul Stanley, Smits Gertien J

机构信息

Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, Nieuwe Achtergracht 166, Amsterdam.

出版信息

J Biol Chem. 2008 Aug 29;283(35):23524-32. doi: 10.1074/jbc.M802908200. Epub 2008 Jun 18.

Abstract

A major challenge in systems biology lies in the integration of processes occurring at different levels, such as transcription, translation, and metabolism, to understand the functioning of a living cell in its environment. We studied the high temperature-induced glycolytic flux increase in Saccharomyces cerevisiae and investigated the regulatory mechanisms underlying this increase. We used glucose-limited chemostat cultures to separate regulatory effects of temperature from effects on growth rate. Growth at increased temperature (38 degrees C versus 30 degrees C) resulted in a strongly increased glycolytic flux, accompanied by a switch from respiration to a partially fermentative metabolism. We observed an increased flux through all enzymes, ranging from 5- to 10-fold. We quantified the contributions of direct temperature effects on enzyme activities, the gene expression cascade and shifts in the metabolic network, to the increased flux through each enzyme. To do this we adapted flux regulation analysis. We show that the direct effect of temperature on enzyme kinetics can be included as a separate term. Together with hierarchical regulation and metabolic regulation, this term explains the total flux change between two steady states. Surprisingly, the effect of the cultivation temperature on enzyme catalytic capacity, both directly through the Arrhenius effect and indirectly through adapted gene expression, is only a moderate contribution to the increased glycolytic flux for most enzymes. The changes in flux are therefore largely caused by changes in the interaction of the enzymes with substrates, products, and effectors.

摘要

系统生物学中的一个主要挑战在于整合发生在不同层面的过程,如转录、翻译和代谢,以了解活细胞在其环境中的功能。我们研究了酿酒酵母中高温诱导的糖酵解通量增加,并探究了这种增加背后的调控机制。我们使用葡萄糖限制的恒化器培养来区分温度的调控作用和对生长速率的影响。在升高的温度(38摄氏度与30摄氏度相比)下生长导致糖酵解通量大幅增加,同时伴随着从呼吸代谢向部分发酵代谢的转变。我们观察到所有酶的通量都增加了,范围在5到10倍之间。我们量化了温度对酶活性的直接影响、基因表达级联反应以及代谢网络变化对每种酶通量增加的贡献。为此,我们采用了通量调控分析方法。我们表明,温度对酶动力学的直接影响可以作为一个单独的项包含在内。连同层级调控和代谢调控,该项解释了两个稳态之间的总通量变化。令人惊讶的是,培养温度对酶催化能力的影响,无论是直接通过阿伦尼乌斯效应还是间接通过适应性基因表达,对于大多数酶而言,对糖酵解通量增加的贡献仅为中等程度。因此,通量的变化很大程度上是由酶与底物、产物和效应物相互作用的变化所引起的。

相似文献

2
Dynamics of glycolytic regulation during adaptation of Saccharomyces cerevisiae to fermentative metabolism.
Appl Environ Microbiol. 2008 Sep;74(18):5710-23. doi: 10.1128/AEM.01121-08. Epub 2008 Jul 18.
4
The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels.
Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15753-8. doi: 10.1073/pnas.0707476104. Epub 2007 Sep 26.
5
Isoenzyme expression changes in response to high temperature determine the metabolic regulation of increased glycolytic flux in yeast.
FEMS Yeast Res. 2012 Aug;12(5):571-81. doi: 10.1111/j.1567-1364.2012.00807.x. Epub 2012 Apr 30.

引用本文的文献

2
Calorie Restriction Decreases Competitive Fitness in Following Heat Stress.
Microorganisms. 2024 Sep 5;12(9):1838. doi: 10.3390/microorganisms12091838.
3
Simultaneous Nanorheometry and Nanothermometry Using Intracellular Diamond Quantum Sensors.
ACS Nano. 2023 Oct 24;17(20):20034-20042. doi: 10.1021/acsnano.3c05285. Epub 2023 Oct 4.
4
Shikonin-Loaded Hollow Fe-MOF Nanoparticles for Enhanced Microwave Thermal Therapy.
ACS Biomater Sci Eng. 2023 Sep 11;9(9):5405-5417. doi: 10.1021/acsbiomaterials.3c00644. Epub 2023 Aug 28.
5
Yeast increases glycolytic flux to support higher growth rates accompanied by decreased metabolite regulation and lower protein phosphorylation.
Proc Natl Acad Sci U S A. 2023 Jun 20;120(25):e2302779120. doi: 10.1073/pnas.2302779120. Epub 2023 Jun 12.
6
Parameter inference for enzyme and temperature constrained genome-scale models.
Sci Rep. 2023 Apr 13;13(1):6079. doi: 10.1038/s41598-023-32982-x.
9
Bayesian genome scale modelling identifies thermal determinants of yeast metabolism.
Nat Commun. 2021 Jan 8;12(1):190. doi: 10.1038/s41467-020-20338-2.

本文引用的文献

4
Significant increase of glycolytic flux in Torulopsis glabrata by inhibition of oxidative phosphorylation.
FEMS Yeast Res. 2006 Dec;6(8):1117-29. doi: 10.1111/j.1567-1364.2006.00153.x.
5
Correlation between thermotolerance and membrane properties in Paramecium aurelia.
J Exp Biol. 2006 Sep;209(Pt 18):3580-6. doi: 10.1242/jeb.02426.
8
9
Unraveling the complexity of flux regulation: a new method demonstrated for nutrient starvation in Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2166-71. doi: 10.1073/pnas.0509831103. Epub 2006 Feb 7.
10
In vivo kinetics of primary metabolism in Saccharomyces cerevisiae studied through prolonged chemostat cultivation.
Metab Eng. 2006 Mar;8(2):160-71. doi: 10.1016/j.ymben.2005.09.005. Epub 2005 Oct 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验