Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, United Kingdom.
ACS Nano. 2023 Oct 24;17(20):20034-20042. doi: 10.1021/acsnano.3c05285. Epub 2023 Oct 4.
The viscoelasticity of the cytoplasm plays a critical role in cell morphology, cell division, and intracellular transport. Viscoelasticity is also interconnected with other biophysical properties, such as temperature, which is known to influence cellular bioenergetics. Probing the connections between intracellular temperature and cytoplasmic viscoelasticity provides an exciting opportunity for the study of biological phenomena, such as metabolism and disease progression. The small length scales and transient nature of changes in these parameters combined with their complex interdependencies pose a challenge for biosensing tools, which are often limited to a single readout modality. Here, we present a dual-mode quantum sensor capable of performing simultaneous nanoscale thermometry and rheometry in dynamic cellular environments. We use nitrogen-vacancy centers in diamond nanocrystals as biocompatible sensors for measurements. We combine subdiffraction resolution single-particle tracking in a fluidic environment with optically detected magnetic resonance spectroscopy to perform simultaneous sensing of viscoelasticity and temperature. We use our sensor to demonstrate probing of the temperature-dependent viscoelasticity in complex media at the nanoscale. We then investigate the interplay between intracellular forces and the cytoplasmic rheology in live cells. Finally, we identify different rheological regimes and reveal evidence of active trafficking and details of the nanoscale viscoelasticity of the cytoplasm.
细胞质的粘弹性在细胞形态、细胞分裂和细胞内运输中起着关键作用。粘弹性还与其他生物物理特性相互关联,例如温度,众所周知,温度会影响细胞的生物能量学。探究细胞内温度和细胞质粘弹性之间的联系,为研究代谢和疾病进展等生物学现象提供了一个令人兴奋的机会。这些参数的小长度尺度和瞬态变化以及它们之间复杂的相互依存关系对生物传感工具构成了挑战,这些工具通常仅限于单一的读出模式。在这里,我们提出了一种双模量子传感器,能够在动态细胞环境中同时进行纳米级的测温学和流变学测量。我们使用金刚石纳米晶体中的氮空位中心作为生物相容性传感器进行测量。我们将流体环境中的亚衍射分辨率单粒子跟踪与光检测磁共振光谱学相结合,以进行粘弹性和温度的同时传感。我们使用我们的传感器在纳米尺度上演示了对复杂介质中依赖温度的粘弹性的探测。然后,我们研究了活细胞中细胞内力和细胞质流变学之间的相互作用。最后,我们确定了不同的流变学状态,并揭示了细胞质纳米粘弹性的主动运输和细节的证据。