Suppr超能文献

酿酒酵母中糖酵解酶的通量主要在转录后水平受到调控。

The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels.

作者信息

Daran-Lapujade Pascale, Rossell Sergio, van Gulik Walter M, Luttik Marijke A H, de Groot Marco J L, Slijper Monique, Heck Albert J R, Daran Jean-Marc, de Winde Johannes H, Westerhoff Hans V, Pronk Jack T, Bakker Barbara M

机构信息

Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands.

出版信息

Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15753-8. doi: 10.1073/pnas.0707476104. Epub 2007 Sep 26.

Abstract

Metabolic fluxes may be regulated "hierarchically," e.g., by changes of gene expression that adjust enzyme capacities (V(max)) and/or "metabolically" by interactions of enzymes with substrates, products, or allosteric effectors. In the present study, a method is developed to dissect the hierarchical regulation into contributions by transcription, translation, protein degradation, and posttranslational modification. The method was applied to the regulation of fluxes through individual glycolytic enzymes when the yeast Saccharomyces cerevisiae was confronted with the absence of oxygen and the presence of benzoic acid depleting its ATP. Metabolic regulation largely contributed to the approximately 10-fold change in flux through the glycolytic enzymes. This contribution varied from 50 to 80%, depending on the glycolytic step and the cultivation condition tested. Within the 50-20% hierarchical regulation of fluxes, transcription played a minor role, whereas regulation of protein synthesis or degradation was the most important. These also contributed to 75-100% of the regulation of protein levels.

摘要

代谢通量可以通过“分级”调节,例如,通过改变基因表达来调整酶的活性(V(max)),和/或通过酶与底物、产物或别构效应物的相互作用进行“代谢”调节。在本研究中,开发了一种方法,将分级调节剖析为转录、翻译、蛋白质降解和翻译后修饰的贡献。当酿酒酵母面临缺氧和苯甲酸消耗其ATP的情况时,该方法被应用于分析通过各个糖酵解酶的通量调节。代谢调节在很大程度上导致了通过糖酵解酶的通量发生约10倍的变化。这一贡献在50%到80%之间变化,具体取决于所测试的糖酵解步骤和培养条件。在通量的50% - 20%的分级调节中,转录起的作用较小,而蛋白质合成或降解的调节最为重要。这些因素也对蛋白质水平调节的75% - 100%有贡献。

相似文献

1
The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels.
Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15753-8. doi: 10.1073/pnas.0707476104. Epub 2007 Sep 26.
2
Dynamics of glycolytic regulation during adaptation of Saccharomyces cerevisiae to fermentative metabolism.
Appl Environ Microbiol. 2008 Sep;74(18):5710-23. doi: 10.1128/AEM.01121-08. Epub 2008 Jul 18.
5
Isoenzyme expression changes in response to high temperature determine the metabolic regulation of increased glycolytic flux in yeast.
FEMS Yeast Res. 2012 Aug;12(5):571-81. doi: 10.1111/j.1567-1364.2012.00807.x. Epub 2012 Apr 30.
6
Hierarchical and metabolic regulation of glucose influx in starved Saccharomyces cerevisiae.
FEMS Yeast Res. 2005 Apr;5(6-7):611-9. doi: 10.1016/j.femsyr.2004.11.003.
7
Systems-level analysis of mechanisms regulating yeast metabolic flux.
Science. 2016 Oct 28;354(6311). doi: 10.1126/science.aaf2786. Epub 2016 Oct 27.
8
Response mechanism of Saccharomyces cerevisiae under benzoic acid stress in ethanol fermentation.
Sci Rep. 2024 Nov 20;14(1):28757. doi: 10.1038/s41598-024-80484-1.
9
Understanding regulation of metabolism through feasibility analysis.
PLoS One. 2012;7(7):e39396. doi: 10.1371/journal.pone.0039396. Epub 2012 Jul 9.
10
Unraveling the complexity of flux regulation: a new method demonstrated for nutrient starvation in Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2166-71. doi: 10.1073/pnas.0509831103. Epub 2006 Feb 7.

引用本文的文献

1
RNA-binding protein AUF1 suppresses cellular senescence and glycolysis by targeting and mRNAs.
Aging (Albany NY). 2025 Jul 24;17(7):1746-1761. doi: 10.18632/aging.206286.
3
Enhanced flux potential analysis links changes in enzyme expression to metabolic flux.
Mol Syst Biol. 2025 Apr;21(4):413-445. doi: 10.1038/s44320-025-00090-9. Epub 2025 Feb 17.
6
The impact of metabolism on the adaptation of organisms to environmental change.
Front Cell Dev Biol. 2023 Jun 12;11:1197226. doi: 10.3389/fcell.2023.1197226. eCollection 2023.
7
Yeast increases glycolytic flux to support higher growth rates accompanied by decreased metabolite regulation and lower protein phosphorylation.
Proc Natl Acad Sci U S A. 2023 Jun 20;120(25):e2302779120. doi: 10.1073/pnas.2302779120. Epub 2023 Jun 12.
8
The putative methyltransferase LaeA regulates mycelium growth and cellulase production in Myceliophthora thermophila.
Biotechnol Biofuels Bioprod. 2023 Apr 3;16(1):58. doi: 10.1186/s13068-023-02313-3.
9
Machine learning alternative to systems biology should not solely depend on data.
Brief Bioinform. 2022 Nov 19;23(6). doi: 10.1093/bib/bbac436.
10
Strains and Molecular Tools for Recombinant Protein Production in Pichia pastoris.
Methods Mol Biol. 2022;2513:79-112. doi: 10.1007/978-1-0716-2399-2_6.

本文引用的文献

2
Proteome analysis of yeast response to various nutrient limitations.
Mol Syst Biol. 2006;2:2006.0026. doi: 10.1038/msb4100069. Epub 2006 May 16.
3
Yeast-based functional genomics and proteomics technologies: the first 15 years and beyond.
Biotechniques. 2006 May;40(5):625-44. doi: 10.2144/000112151.
4
Unraveling the complexity of flux regulation: a new method demonstrated for nutrient starvation in Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2166-71. doi: 10.1073/pnas.0509831103. Epub 2006 Feb 7.
5
Global analysis of protein phosphorylation in yeast.
Nature. 2005 Dec 1;438(7068):679-84. doi: 10.1038/nature04187.
7
Translational regulation of GCN4 and the general amino acid control of yeast.
Annu Rev Microbiol. 2005;59:407-50. doi: 10.1146/annurev.micro.59.031805.133833.
9
Hierarchical and metabolic regulation of glucose influx in starved Saccharomyces cerevisiae.
FEMS Yeast Res. 2005 Apr;5(6-7):611-9. doi: 10.1016/j.femsyr.2004.11.003.
10
Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium.
J Cell Comp Physiol. 1953 Feb;41(1):23-36. doi: 10.1002/jcp.1030410103.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验