Novikov Valeriy, Jia Jun, Brasil Túlio Brito, Grimaldi Andrea, Bocoum Maïmouna, Balabas Mikhail, Müller Jörg Helge, Zeuthen Emil, Polzik Eugene Simon
Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
Russian Quantum Center, Skolkovo, Moscow, Russia.
Nature. 2025 Jul;643(8073):955-960. doi: 10.1038/s41586-025-09224-3. Epub 2025 Jul 2.
Ultimate limits for the sensing of fields and forces are set by the quantum noise of a sensor. Entanglement allows for suppression of such noise and for achieving sensitivity beyond standard quantum limits. Applicability of quantum optical sensing is often restricted by fixed wavelengths of available photonic quantum sources. Another ubiquitous limitation is associated with challenges of achieving quantum-noise-limited sensitivity in the acoustic noise frequency range relevant for several applications. Here we demonstrate a tool for broadband quantum sensing by performing quantum state processing that can be applied to a wide range of the optical spectrum and by suppressing quantum noise over an octave in the acoustic frequency range. An atomic spin ensemble is strongly coupled to one of the frequency-tunable beams of an Einstein-Podolsky-Rosen (EPR) source of light. The other EPR beam of light, entangled with the first one, is tuned to a disparate wavelength. Engineering the spin ensemble to act as a negative-mass or positive-mass oscillator, we demonstrate frequency-dependent quantum noise reduction for measurements at the disparate wavelength. The tunability of the spin ensemble enables targeting quantum noise in a variety of systems with dynamics ranging from kHz to MHz. As an example of broadband quantum noise reduction in the acoustic frequency range, we analyse the applicability of our approach to gravitational-wave detectors (GWDs). Other possible applications include continuous-variable quantum repeaters and distributed quantum sensing.
传感器对场和力的探测存在着由量子噪声所设定的最终极限。纠缠态能够抑制此类噪声,并实现超越标准量子极限的灵敏度。量子光学传感的适用性常常受到可用光子量子源固定波长的限制。另一个普遍存在的限制与在与多种应用相关的声学噪声频率范围内实现量子噪声极限灵敏度的挑战有关。在此,我们通过执行量子态处理展示了一种用于宽带量子传感的工具,该处理可应用于广泛的光谱范围,并在一个倍频程的声学频率范围内抑制量子噪声。一个原子自旋系综与一个爱因斯坦 - 波多尔斯基 - 罗森(EPR)光源的频率可调光束之一强烈耦合。与第一束光纠缠的另一束EPR光束则被调谐到不同的波长。通过将自旋系综设计成负质量或正质量振荡器,我们展示了在不同波长下测量时与频率相关的量子噪声降低。自旋系综的可调谐性使得能够在从千赫兹到兆赫兹的各种动力学系统中针对量子噪声。作为声学频率范围内宽带量子噪声降低的一个例子,我们分析了我们的方法对引力波探测器(GWD)的适用性。其他可能的应用包括连续变量量子中继器和分布式量子传感。