Hovgaard Mads Bruun, Rechendorff Kristian, Chevallier Jacques, Foss Morten, Besenbacher Flemming
Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark.
J Phys Chem B. 2008 Jul 17;112(28):8241-9. doi: 10.1021/jp801103n. Epub 2008 Jun 20.
The complex mechanisms of protein adsorption at the solid-liquid interface is of great importance in many research areas, including protein purification, biocompatibility of medical implants, biosensing, and biofouling. The protein adsorption process depends crucially on both the nanoscale chemistry and topography of the interface. Here, we investigate the adsorption of the cell-binding protein fibronectin on flat and nanometer scale rough tantalum oxide surfaces using ellipsometry and quartz crystal microbalance with dissipation (QCM-D). On the flat tantalum oxide surfaces, the interfacial protein spreading causes an increase in the rigidity and a decrease in the thickness of the adsorbed fibronectin layer with decreasing bulk protein concentration. For the tantalum oxide surfaces with well-controlled, stochastic nanometer scale roughness, similar concentration effects are observed for the rigidity of the fibronectin layer and saturated fibronectin uptake. However, we find that the nanorough tantalum oxide surfaces promote additional protein conformational changes, an effect especially apparent from the QCM-D signals, interpreted as an additional stiffening of the formed fibronectin layers.
蛋白质在固液界面的复杂吸附机制在许多研究领域都非常重要,包括蛋白质纯化、医用植入物的生物相容性、生物传感和生物污染。蛋白质吸附过程主要取决于界面的纳米级化学性质和形貌。在此,我们使用椭偏仪和带耗散的石英晶体微天平(QCM-D)研究了细胞结合蛋白纤连蛋白在平坦和纳米级粗糙氧化钽表面的吸附情况。在平坦的氧化钽表面,随着本体蛋白质浓度的降低,界面蛋白质铺展导致吸附的纤连蛋白层刚性增加、厚度减小。对于具有良好控制的随机纳米级粗糙度的氧化钽表面,纤连蛋白层的刚性和饱和纤连蛋白摄取量也观察到类似的浓度效应。然而,我们发现纳米粗糙的氧化钽表面会促进额外的蛋白质构象变化,这种效应从QCM-D信号中尤为明显,可解释为形成的纤连蛋白层进一步变硬。