Riverlane, St. Andrews House, 59 St. Andrews Street, Cambridge CB2 3BZ, United Kingdom.
Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, United Kingdom.
J Chem Theory Comput. 2022 Dec 13;18(12):7001-7023. doi: 10.1021/acs.jctc.2c00574. Epub 2022 Nov 10.
Computational chemistry is an essential tool in the pharmaceutical industry. Quantum computing is a fast evolving technology that promises to completely shift the computational capabilities in many areas of chemical research by bringing into reach currently impossible calculations. This perspective illustrates the near-future applicability of quantum computation of molecules to pharmaceutical problems. We briefly summarize and compare the scaling properties of state-of-the-art quantum algorithms and provide novel estimates of the quantum computational cost of simulating progressively larger embedding regions of a pharmaceutically relevant covalent protein-drug complex involving the drug Ibrutinib. Carrying out these calculations requires an error-corrected quantum architecture that we describe. Our estimates showcase that recent developments on quantum phase estimation algorithms have dramatically reduced the quantum resources needed to run fully quantum calculations in active spaces of around 50 orbitals and electrons, from estimated over 1000 years using the Trotterization approach to just a few days with sparse qubitization, painting a picture of fast and exciting progress in this nascent field.
计算化学是制药行业的重要工具。量子计算是一项快速发展的技术,有望通过实现目前不可能的计算,彻底改变化学研究的许多领域的计算能力。本文从制药的角度阐述了量子计算在分子计算方面的近期应用前景。我们简要总结和比较了最先进的量子算法的缩放特性,并对模拟含有伊布替尼药物的相关共价蛋白-药物复合物的逐步增大的嵌入区域的量子计算成本进行了新的估计。进行这些计算需要我们所描述的错误校正量子架构。我们的估计表明,最近在量子相位估计算法方面的发展,已经大大减少了在大约 50 个轨道和电子的活性空间中进行全量子计算所需的量子资源,从使用 Trotterization 方法估计的超过 1000 年,减少到稀疏量子化的仅仅几天,这为这个新兴领域的快速和令人兴奋的发展描绘了一幅蓝图。