Suppr超能文献

相似文献

1
Fast algorithm for calculation of inhomogeneity gradient in magnetic resonance imaging data.
J Magn Reson Imaging. 2010 Nov;32(5):1197-208. doi: 10.1002/jmri.22344.
2
Robust generative asymmetric GMM for brain MR image segmentation.
Comput Methods Programs Biomed. 2017 Nov;151:123-138. doi: 10.1016/j.cmpb.2017.08.017. Epub 2017 Aug 24.
3
Interplay between intensity standardization and inhomogeneity correction in MR image processing.
IEEE Trans Med Imaging. 2005 May;24(5):561-76. doi: 10.1109/TMI.2004.843256.
4
MRI intensity inhomogeneity correction by combining intensity and spatial information.
Phys Med Biol. 2004 Sep 7;49(17):4119-33. doi: 10.1088/0031-9155/49/17/020.
5
Quantitative Evaluation of Intensity Inhomogeneity Correction Methods for Structural MR Brain Images.
Neuroinformatics. 2016 Jan;14(1):5-21. doi: 10.1007/s12021-015-9277-2.
7
Intensity inhomogeneity correction of multispectral MR images.
Neuroimage. 2006 Aug 1;32(1):54-61. doi: 10.1016/j.neuroimage.2006.03.020. Epub 2006 May 2.
8
A fast model independent method for automatic correction of intensity nonuniformity in MRI data.
J Magn Reson Imaging. 1999 Oct;10(4):550-62. doi: 10.1002/(sici)1522-2586(199910)10:4<550::aid-jmri8>3.0.co;2-q.
9
Rough sets for bias field correction in MR images using contraharmonic mean and quantitative index.
IEEE Trans Med Imaging. 2013 Nov;32(11):2140-51. doi: 10.1109/TMI.2013.2274804. Epub 2013 Jul 31.
10
Retrospective correction of intensity inhomogeneity with sparsity constraints in transform-domain: Application to brain MRI.
Magn Reson Imaging. 2019 Sep;61:207-223. doi: 10.1016/j.mri.2019.04.011. Epub 2019 Apr 19.

引用本文的文献

3
DSMRI: Domain Shift Analyzer for Multi-Center MRI Datasets.
Diagnostics (Basel). 2023 Sep 14;13(18):2947. doi: 10.3390/diagnostics13182947.
4
Application of Machine Learning Techniques for Characterization of Ischemic Stroke with MRI Images: A Review.
Diagnostics (Basel). 2022 Oct 19;12(10):2535. doi: 10.3390/diagnostics12102535.
5
AutoComBat: a generic method for harmonizing MRI-based radiomic features.
Sci Rep. 2022 Jul 26;12(1):12762. doi: 10.1038/s41598-022-16609-1.
6
Technical Note: MRQy - An open-source tool for quality control of MR imaging data.
Med Phys. 2020 Dec;47(12):6029-6038. doi: 10.1002/mp.14593. Epub 2020 Nov 27.
7

本文引用的文献

1
Normobaric hyperoximia increases hypoxia-induced cerebral injury: DTI study in rats.
J Neurosci Res. 2010 Apr;88(5):1146-56. doi: 10.1002/jnr.22273.
2
Improved cerebellar tissue classification on magnetic resonance images of brain.
J Magn Reson Imaging. 2009 May;29(5):1035-42. doi: 10.1002/jmri.21734.
3
Image background inhomogeneity correction in MRI via intensity standardization.
Comput Med Imaging Graph. 2009 Jan;33(1):7-16. doi: 10.1016/j.compmedimag.2008.09.004. Epub 2008 Nov 11.
4
Restoration of MRI data for intensity non-uniformities using local high order intensity statistics.
Med Image Anal. 2009 Feb;13(1):36-48. doi: 10.1016/j.media.2008.05.003. Epub 2008 Jun 7.
5
Volume and shape in feature space on adaptive FCM in MRI segmentation.
Ann Biomed Eng. 2008 Sep;36(9):1580-93. doi: 10.1007/s10439-008-9520-1. Epub 2008 Jun 24.
6
Adaptive segmentation of MRI data.
IEEE Trans Med Imaging. 1996;15(4):429-42. doi: 10.1109/42.511747.
7
Retrospective correction of intensity inhomogeneities in MRI.
IEEE Trans Med Imaging. 1995;14(1):36-41. doi: 10.1109/42.370400.
8
A review of methods for correction of intensity inhomogeneity in MRI.
IEEE Trans Med Imaging. 2007 Mar;26(3):405-21. doi: 10.1109/TMI.2006.891486.
9
The fast automatic algorithm for correction of MR bias field.
J Magn Reson Imaging. 2006 Oct;24(4):891-900. doi: 10.1002/jmri.20695.
10
A novel kernelized fuzzy C-means algorithm with application in medical image segmentation.
Artif Intell Med. 2004 Sep;32(1):37-50. doi: 10.1016/j.artmed.2004.01.012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验