Yeo Si Yong, Xie Xianghua, Sazonov Igor, Nithiarasu Perumal
Institute of High Performance Computing, 1 Fusionopolis Way, Singapore 138632, Singapore; College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
Int J Numer Method Biomed Eng. 2014 Feb;30(2):232-48. doi: 10.1002/cnm.2600. Epub 2013 Oct 28.
In this article, a new level set model is proposed for the segmentation of biomedical images. The image energy of the proposed model is derived from a robust image gradient feature which gives the active contour a global representation of the geometric configuration, making it more robust in dealing with image noise, weak edges, and initial configurations. Statistical shape information is incorporated using nonparametric shape density distribution, which allows the shape model to handle relatively large shape variations. The segmentation of various shapes from both synthetic and real images depict the robustness and efficiency of the proposed method.
在本文中,提出了一种用于生物医学图像分割的新水平集模型。所提模型的图像能量源自一种鲁棒的图像梯度特征,该特征为活动轮廓提供了几何构型的全局表示,使其在处理图像噪声、弱边缘和初始构型时更具鲁棒性。利用非参数形状密度分布纳入统计形状信息,这使得形状模型能够处理相对较大的形状变化。从合成图像和真实图像中对各种形状的分割展示了所提方法的鲁棒性和有效性。