Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cádiz, 11008, Spain.
Division of Neonatology, Department of Paediatrics, Puerta del Mar University Hospital, Cádiz, 11008, Spain.
Neuroinformatics. 2024 Oct;22(4):407-420. doi: 10.1007/s12021-024-09661-x. Epub 2024 Apr 24.
Magnetic Resonance Imaging (MRI) plays an important role in neurology, particularly in the precise segmentation of brain tissues. Accurate segmentation is crucial for diagnosing brain injuries and neurodegenerative conditions. We introduce an Enhanced Spatial Fuzzy C-means (esFCM) algorithm for 3D T1 MRI segmentation to three tissues, i.e. White Matter (WM), Gray Matter (GM), and Cerebrospinal Fluid (CSF). The esFCM employs a weighted least square algorithm utilizing the Structural Similarity Index (SSIM) for polynomial bias field correction. It also takes advantage of the information from the membership function of the last iteration to compute neighborhood impact. This strategic refinement enhances the algorithm's adaptability to complex image structures, effectively addressing challenges such as intensity irregularities and contributing to heightened segmentation accuracy. We compare the segmentation accuracy of esFCM against four variants of FCM, Gaussian Mixture Model (GMM) and FSL and ANTs algorithms using four various dataset, employing three measurement criteria. Comparative assessments underscore esFCM's superior performance, particularly in scenarios involving added noise and bias fields.The obtained results emphasize the significant potential of the proposed method in the segmentation of MRI images.
磁共振成像(MRI)在神经学中扮演着重要角色,特别是在大脑组织的精确分割方面。准确的分割对于诊断脑损伤和神经退行性疾病至关重要。我们引入了一种增强型空间模糊 C 均值(esFCM)算法,用于对三种组织(即白质(WM)、灰质(GM)和脑脊液(CSF))进行 3D T1 MRI 分割。esFCM 采用加权最小二乘法算法,利用结构相似性指数(SSIM)进行多项式偏置场校正。它还利用上一次迭代的隶属函数信息来计算邻域影响。这种策略性的细化增强了算法对复杂图像结构的适应性,有效地解决了强度不规则等挑战,提高了分割精度。我们使用四种不同的数据集和三种测量标准,将 esFCM 与 FCM 的四种变体、高斯混合模型(GMM)和 FSL 和 ANTs 算法的分割准确性进行了比较。比较评估强调了 esFCM 在存在附加噪声和偏置场的情况下的优越性能。所获得的结果强调了该方法在 MRI 图像分割中的巨大潜力。