Suppr超能文献

具有先验生物学知识的模糊c均值聚类

Fuzzy c-means clustering with prior biological knowledge.

作者信息

Tari Luis, Baral Chitta, Kim Seungchan

机构信息

School of Computing and Informatics, Department of Computer Science and Engineering, Ira A. Fulton School of Engineering, Arizona State University, P.O. Box 878809, Tempe, AZ 85287-8809, USA.

出版信息

J Biomed Inform. 2009 Feb;42(1):74-81. doi: 10.1016/j.jbi.2008.05.009. Epub 2008 May 24.

Abstract

We propose a novel semi-supervised clustering method called GO Fuzzy c-means, which enables the simultaneous use of biological knowledge and gene expression data in a probabilistic clustering algorithm. Our method is based on the fuzzy c-means clustering algorithm and utilizes the Gene Ontology annotations as prior knowledge to guide the process of grouping functionally related genes. Unlike traditional clustering methods, our method is capable of assigning genes to multiple clusters, which is a more appropriate representation of the behavior of genes. Two datasets of yeast (Saccharomyces cerevisiae) expression profiles were applied to compare our method with other state-of-the-art clustering methods. Our experiments show that our method can produce far better biologically meaningful clusters even with the use of a small percentage of Gene Ontology annotations. In addition, our experiments further indicate that the utilization of prior knowledge in our method can predict gene functions effectively. The source code is freely available at http://sysbio.fulton.asu.edu/gofuzzy/.

摘要

我们提出了一种名为GO模糊c均值的新型半监督聚类方法,该方法能够在概率聚类算法中同时利用生物知识和基因表达数据。我们的方法基于模糊c均值聚类算法,并利用基因本体注释作为先验知识来指导功能相关基因的分组过程。与传统聚类方法不同,我们的方法能够将基因分配到多个簇中,这更恰当地表示了基因的行为。应用两个酵母(酿酒酵母)表达谱数据集将我们的方法与其他最先进的聚类方法进行比较。我们的实验表明,即使仅使用一小部分基因本体注释,我们的方法也能产生更具生物学意义的簇。此外,我们的实验进一步表明,我们方法中先验知识的利用能够有效地预测基因功能。源代码可在http://sysbio.fulton.asu.edu/gofuzzy/免费获取。

相似文献

1
Fuzzy c-means clustering with prior biological knowledge.具有先验生物学知识的模糊c均值聚类
J Biomed Inform. 2009 Feb;42(1):74-81. doi: 10.1016/j.jbi.2008.05.009. Epub 2008 May 24.

引用本文的文献

3
Integrative clustering methods for multi-omics data.多组学数据的整合聚类方法。
Wiley Interdiscip Rev Comput Stat. 2022 May-Jun;14(3). doi: 10.1002/wics.1553. Epub 2021 Feb 7.
8
Semi-Supervised Fuzzy Clustering with Feature Discrimination.具有特征区分的半监督模糊聚类
PLoS One. 2015 Sep 1;10(9):e0131160. doi: 10.1371/journal.pone.0131160. eCollection 2015.
9
Integrative clustering methods for high-dimensional molecular data.用于高维分子数据的整合聚类方法
Transl Cancer Res. 2014 Jun 1;3(3):202-216. doi: 10.3978/j.issn.2218-676X.2014.06.03.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验