Suppr超能文献

发夹状核酶关键活性位点残基Ade38处核碱基变异的结构效应。

Structural effects of nucleobase variations at key active site residue Ade38 in the hairpin ribozyme.

作者信息

MacElrevey Celeste, Salter Jason D, Krucinska Jolanta, Wedekind Joseph E

机构信息

Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.

出版信息

RNA. 2008 Aug;14(8):1600-16. doi: 10.1261/rna.1055308. Epub 2008 Jul 2.

Abstract

The hairpin ribozyme requires functional groups from Ade38 to achieve efficient bond cleavage or ligation. To identify molecular features that contribute to catalysis, structures of position 38 base variants 2,6-diaminopurine (DAP), 2-aminopurine (AP), cytosine (Cyt), and guanine (Gua) were determined between 2.2 and 2.8 A resolution. For each variant, two substrate modifications were compared: (1) a 2'-O-methyl-substituent at Ade-1 was used in lieu of the nucleophile to mimic the precatalytic state, and (2) a 3'-deoxy-2',5'-phosphodiester linkage between Ade-1 and Gua+1 was used to mimic a reaction-intermediate conformation. While the global fold of each variant remained intact, the results revealed the importance of Ade38 N1 and N6 groups. Absence of N6 resulting from AP38 coincided with failure to localize the precatalytic scissile phosphate. Cyt38 severely impaired catalysis in a prior study, and its structures here indicated an anti base conformation that sequesters the imino moiety from the scissile bond. Gua38 was shown to be even more deleterious to activity. Although the precatalytic structure was nominally affected, the reaction-intermediate conformation indicated a severe electrostatic clash between the Gua38 keto oxygen and the pro-Rp oxygen of the scissile bond. Overall, position 38 modifications solved in the presence of 2'-OMe Ade-1 deviated from in-line geometry, whereas variants with a 2',5' linkage exhibited S-turn destabilization, as well as base conformational changes from syn to anti. These findings demonstrate the importance of the Ade38 Watson-Crick face in attaining a reaction-intermediate state and the sensitivity of the RNA fold to restructuring when electrostatic and shape features fail to complement.

摘要

发夹状核酶需要Ade38的官能团来实现高效的键切割或连接。为了确定有助于催化的分子特征,在2.2至2.8埃分辨率下测定了位置38碱基变体2,6 - 二氨基嘌呤(DAP)、2 - 氨基嘌呤(AP)、胞嘧啶(Cyt)和鸟嘌呤(Gua)的结构。对于每个变体,比较了两种底物修饰:(1)使用Ade - 1处的2'-O - 甲基取代基代替亲核试剂来模拟催化前状态,以及(2)使用Ade - 1和Gua + 1之间的3'-脱氧 - 2',5'-磷酸二酯键来模拟反应中间体构象。虽然每个变体的整体折叠保持完整,但结果揭示了Ade38的N1和N6基团的重要性。AP38导致的N6缺失与催化前可切割磷酸的定位失败同时出现。在先前的研究中,Cyt38严重损害催化作用,此处其结构表明一种反式碱基构象,该构象将亚氨基部分与可切割键隔离。已表明Gua38对活性的损害更大。尽管催化前结构名义上受到影响,但反应中间体构象表明Gua38酮基氧与可切割键的前Rp氧之间存在严重的静电冲突。总体而言,在存在2'-OMe Ade - 1的情况下解析的位置38修饰偏离了共线几何结构,而具有2',5'连接的变体表现出S型转弯不稳定,以及碱基构象从顺式到反式的变化。这些发现证明了Ade38沃森 - 克里克面在达到反应中间体状态中的重要性,以及当静电和形状特征不互补时RNA折叠对结构重组的敏感性。

相似文献

1
Structural effects of nucleobase variations at key active site residue Ade38 in the hairpin ribozyme.
RNA. 2008 Aug;14(8):1600-16. doi: 10.1261/rna.1055308. Epub 2008 Jul 2.
2
A transition-state interaction shifts nucleobase ionization toward neutrality to facilitate small ribozyme catalysis.
J Am Chem Soc. 2012 Oct 17;134(41):16933-6. doi: 10.1021/ja3070528. Epub 2012 Oct 3.
3
Identification of an imino group indispensable for cleavage by a small ribozyme.
J Am Chem Soc. 2009 May 6;131(17):6093-5. doi: 10.1021/ja900450h.
5
Hatchet ribozyme structure and implications for cleavage mechanism.
Proc Natl Acad Sci U S A. 2019 May 28;116(22):10783-10791. doi: 10.1073/pnas.1902413116. Epub 2019 May 14.
6
Role of an active site adenine in hairpin ribozyme catalysis.
J Mol Biol. 2005 Jun 24;349(5):989-1010. doi: 10.1016/j.jmb.2005.04.005. Epub 2005 Apr 20.
7
The role of an active site Mg(2+) in HDV ribozyme self-cleavage: insights from QM/MM calculations.
Phys Chem Chem Phys. 2015 Jan 7;17(1):670-9. doi: 10.1039/c4cp03857f.
8
General acid catalysis by the hepatitis delta virus ribozyme.
Nat Chem Biol. 2005 Jun;1(1):45-52. doi: 10.1038/nchembio703. Epub 2005 May 3.
9
Two distinct catalytic strategies in the hepatitis δ virus ribozyme cleavage reaction.
Biochemistry. 2011 Nov 8;50(44):9424-33. doi: 10.1021/bi201157t. Epub 2011 Oct 17.
10
Disparate HDV ribozyme crystal structures represent intermediates on a rugged free-energy landscape.
RNA. 2014 Jul;20(7):1112-28. doi: 10.1261/rna.044982.114. Epub 2014 May 22.

引用本文的文献

2
Thermodynamics and kinetics of RNA tertiary structure formation in the junctionless hairpin ribozyme.
Biophys Chem. 2017 Sep;228:62-68. doi: 10.1016/j.bpc.2017.07.001. Epub 2017 Jul 8.
3
Metrics for comparison of crystallographic maps.
Acta Crystallogr D Biol Crystallogr. 2014 Oct;70(Pt 10):2593-606. doi: 10.1107/S1399004714016289. Epub 2014 Sep 27.
4
General acid-base catalysis mediated by nucleobases in the hairpin ribozyme.
J Am Chem Soc. 2012 Oct 10;134(40):16717-24. doi: 10.1021/ja3067429. Epub 2012 Sep 25.
5
QM/MM studies of hairpin ribozyme self-cleavage suggest the feasibility of multiple competing reaction mechanisms.
J Phys Chem B. 2011 Dec 1;115(47):13911-24. doi: 10.1021/jp206963g. Epub 2011 Nov 8.
6
Prevalence of syn nucleobases in the active sites of functional RNAs.
RNA. 2011 Oct;17(10):1775-87. doi: 10.1261/rna.2759911. Epub 2011 Aug 26.
8
Nucleases: diversity of structure, function and mechanism.
Q Rev Biophys. 2011 Feb;44(1):1-93. doi: 10.1017/S0033583510000181. Epub 2010 Sep 21.
10
Catalytic importance of a protonated adenosine in the hairpin ribozyme active site.
Biochemistry. 2010 May 4;49(17):3723-32. doi: 10.1021/bi100234v.

本文引用的文献

1
Shared traits on the reaction coordinates of ribonuclease and an RNA enzyme.
Biochem Biophys Res Commun. 2008 Jun 20;371(1):154-8. doi: 10.1016/j.bbrc.2008.04.036. Epub 2008 Apr 16.
2
Ribozyme catalysis revisited: is water involved?
Mol Cell. 2007 Dec 28;28(6):923-9. doi: 10.1016/j.molcel.2007.12.001.
3
Essential role of an active-site guanine in glmS ribozyme catalysis.
J Am Chem Soc. 2007 Dec 5;129(48):14858-9. doi: 10.1021/ja0768441. Epub 2007 Nov 9.
4
5
A posteriori design of crystal contacts to improve the X-ray diffraction properties of a small RNA enzyme.
Acta Crystallogr D Biol Crystallogr. 2007 Jul;63(Pt 7):812-25. doi: 10.1107/S090744490702464X. Epub 2007 Jun 15.
7
Active site labeling of G8 in the hairpin ribozyme: implications for structure and mechanism.
J Am Chem Soc. 2006 Dec 27;128(51):16540-5. doi: 10.1021/ja063942y.
8
Trapped water molecules are essential to structural dynamics and function of a ribozyme.
Proc Natl Acad Sci U S A. 2006 Sep 5;103(36):13380-5. doi: 10.1073/pnas.0605090103. Epub 2006 Aug 24.
9
Nucleobase catalysis in ribozyme mechanism.
Curr Opin Chem Biol. 2006 Oct;10(5):455-64. doi: 10.1016/j.cbpa.2006.08.014. Epub 2006 Aug 28.
10
Nucleobase catalysis in the hairpin ribozyme.
RNA. 2006 Jun;12(6):980-7. doi: 10.1261/rna.11706. Epub 2006 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验