Life Science Institute, Zhejiang University, 310058 Hangzhou, China.
Institute of Organic Chemistry, Leopold Franzens University, 6020 Innsbruck, Austria.
Proc Natl Acad Sci U S A. 2019 May 28;116(22):10783-10791. doi: 10.1073/pnas.1902413116. Epub 2019 May 14.
Small self-cleaving ribozymes catalyze site-specific cleavage of their own phosphodiester backbone with implications for viral genome replication, pre-mRNA processing, and alternative splicing. We report on the 2.1-Å crystal structure of the hatchet ribozyme product, which adopts a compact pseudosymmetric dimeric scaffold, with each monomer stabilized by long-range interactions involving highly conserved nucleotides brought into close proximity of the scissile phosphate. Strikingly, the catalytic pocket contains a cavity capable of accommodating both the modeled scissile phosphate and its flanking 5' nucleoside. The resulting modeled precatalytic conformation incorporates a splayed-apart alignment at the scissile phosphate, thereby providing structure-based insights into the in-line cleavage mechanism. We identify a guanine lining the catalytic pocket positioned to contribute to cleavage chemistry. The functional relevance of structure-based insights into hatchet ribozyme catalysis is strongly supported by cleavage assays monitoring the impact of selected nucleobase and atom-specific mutations on ribozyme activity.
小型自我切割核酶催化自身磷酸二酯骨架的特异性切割,这对病毒基因组复制、前体 mRNA 加工和选择性剪接具有重要意义。我们报告了斧状核酶产物的 2.1Å 晶体结构,该结构采用紧凑的拟对称二聚体支架,每个单体通过涉及高度保守核苷酸的远程相互作用稳定,使易位磷酸接近。引人注目的是,催化口袋包含一个空腔,能够容纳模型化的易位磷酸及其侧翼的 5'核苷酸。由此产生的模型前催化构象包含在易位磷酸处张开的排列,从而为在线切割机制提供了基于结构的见解。我们鉴定了催化口袋中的一个嘌呤,其位置有助于切割化学。基于结构的斧状核酶催化见解的功能相关性得到了切割分析的有力支持,该分析监测了选定的核苷碱基和原子特异性突变对核酶活性的影响。