Suppr超能文献

影响人类大脑进化和个体神经发育的动态基因组元件的综合观点。

An integrative view of dynamic genomic elements influencing human brain evolution and individual neurodevelopment.

作者信息

Gericke G S

机构信息

Department of Biomedical Sciences, Tshwane University of Technology, PO Box 2040, Pretoria, Gauteng, South Africa.

出版信息

Med Hypotheses. 2008 Sep;71(3):360-73. doi: 10.1016/j.mehy.2008.03.048. Epub 2008 Jul 2.

Abstract

An increasing number of reports of rearranged and aneuploid chromosomes in brain cells suggest an unexpected link between developmental chromosomal instability and brain genome diversity. Unstable chromosomal fragile sites (FS), endogenously or exogenously induced by replicative stressors, participate in genetic rearrangement and may be key features of epigenetically modified neuroplasticity. Certain common chromosomal FS are known to function as signals for RAG complex targets. Recombinase activation gene RAG-1 directed V(D)J recombination affecting specific recognition sequences allows the immune system to encode memories of a vast array of antigens. The finding that RAG-1 is transcribed in the central nervous system raised the consideration that immunoglobulin-like somatic DNA recombination could be involved in recognition and memory processes in brain development and function. Cognitive stress induced somatic hypermutation in neurons, similar to what happens after antigenic challenge in lymphocytes, could underly a massive increase in the synthesis of novel macromolecules to function as coded information bits which get selected for memory storage. This process may involve mobile element activation, which may also play a role in recombinational repair. As a source of tested, successful new open reading frames, somatic hypermutation may confer a selective advantage if somatically acquired information is fed back to germline V gene arrays and the human brain could have adopted a similar process to manage the information captured in rearranged sequences. In neuroevolution and individual brain development, germline information could thus represent a crucial component. The brain itself may, from an evolutionary genetic point of view, represent nothing more than a highly specialized and individually diversified information accrual and memory system to increase the overall phenotypically validated information content of the immortal germline. In the evolution of rapid evolvability, exceeding the narrow margins within which genetic instability is useful, would be expected to be associated with penalties in terms of neuropathology and malignancy risk. The utilisation of genetic instability to obtain diversification under stress is an ancient principle, but may have reached unprecedented levels in humans, which, in turn, fed back to creation of more unstable environments. Since increased genomic instability is likely to have been introduced to the genomes of other life forms by some of the extremely genotoxic environments created by H sapiens, a better understanding of the implications of borderline genomic instability may be an important priority to ensure long term biological survival, including that of our own species.

摘要

越来越多关于脑细胞中染色体重排和非整倍体的报道表明,发育性染色体不稳定性与脑基因组多样性之间存在意想不到的联系。由复制应激源内源性或外源性诱导产生的不稳定染色体脆性位点(FS)参与基因重排,可能是表观遗传修饰的神经可塑性的关键特征。已知某些常见的染色体FS可作为RAG复合体靶点的信号。重组酶激活基因RAG-1指导的V(D)J重组影响特定识别序列,使免疫系统能够编码对大量抗原的记忆。RAG-1在中枢神经系统中被转录这一发现引发了这样的思考:免疫球蛋白样体细胞DNA重组可能参与脑发育和功能中的识别与记忆过程。认知应激诱导神经元发生体细胞超突变,类似于淋巴细胞受到抗原刺激后发生的情况,这可能是新大分子合成大量增加的基础,这些新大分子作为编码信息位被选择用于记忆存储。这个过程可能涉及移动元件激活,其也可能在重组修复中发挥作用。作为经过测试的、成功的新开放阅读框的来源,如果体细胞获得的信息反馈到种系V基因阵列,体细胞超突变可能会带来选择性优势,并且人类大脑可能采用了类似的过程来管理重排序列中捕获的信息。因此,在神经进化和个体脑发育中,种系信息可能是一个关键组成部分。从进化遗传学的角度来看,大脑本身可能只不过是一个高度专业化且个体多样化的信息积累和记忆系统,以增加不朽种系在表型上经过验证的总体信息内容。在快速进化能力的进化过程中,超过遗传不稳定有用的狭窄范围,预计会在神经病理学和恶性肿瘤风险方面受到惩罚。利用遗传不稳定性在应激下获得多样性是一个古老的原则,但在人类中可能达到了前所未有的水平,这反过来又反馈到创造更多不稳定的环境。由于人类创造的一些极具基因毒性的环境可能已将基因组不稳定性增加引入其他生命形式的基因组,更好地理解临界基因组不稳定性的影响可能是确保包括我们自己物种在内的长期生物生存的一个重要优先事项。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验